Collider probes of axion-like particles (original) (raw)
R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE]. ArticleADS Google Scholar
R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev.D 16 (1977) 1791 [INSPIRE]. ADS Google Scholar
M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys.B 166 (1980) 493 [INSPIRE]. ArticleADSMathSciNet Google Scholar
A.R. Zhitnitsky, On possible suppression of the axion hadron interactions (in Russian), Sov. J. Nucl. Phys.31 (1980) 260 [Yad. Fiz.31 (1980) 497] [INSPIRE].
M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Phys. Lett.B 104 (1981) 199. ArticleADS Google Scholar
M.J. Dolan, F. Kahlhoefer, C. McCabe and K. Schmidt-Hoberg, A taste of dark matter: flavour constraints on pseudoscalar mediators, JHEP03 (2015) 171 [Erratum ibid.07 (2015) 103] [arXiv:1412.5174] [INSPIRE].
D. Chang, W.-F. Chang, C.-H. Chou and W.-Y. Keung, Large two loop contributions to g − 2 from a generic pseudoscalar boson, Phys. Rev.D 63 (2001) 091301 [hep-ph/0009292] [INSPIRE].
W.J. Marciano, A. Masiero, P. Paradisi and M. Passera, Contributions of axionlike particles to lepton dipole moments, Phys. Rev.D 94 (2016) 115033 [arXiv:1607.01022] [INSPIRE]. ADS Google Scholar
A.J. Krasznahorkay et al., Observation of anomalous internal pair creation in 8 Be: a possible indication of a light, neutral boson, Phys. Rev. Lett.116 (2016) 042501 [arXiv:1504.01527] [INSPIRE]. ArticleADS Google Scholar
J.L. Feng et al., Particle physics models for the 17 MeV anomaly in beryllium nuclear decays, Phys. Rev.D 95 (2017) 035017 [arXiv:1608.03591] [INSPIRE]. ADS Google Scholar
U. Ellwanger and S. Moretti, Possible explanation of the electron positron anomaly at 17 MeV in 8 Be transitions through a light pseudoscalar, JHEP11 (2016) 039 [arXiv:1609.01669] [INSPIRE]. Article Google Scholar
A. Berlin, D. Hooper and S.D. McDermott, Simplified dark matter models for the galactic center gamma-ray excess, Phys. Rev.D 89 (2014) 115022 [arXiv:1404.0022] [INSPIRE]. ADS Google Scholar
IAXO collaboration, I. Irastorza et al., The International Axion Observatory IAXO. Letter of Intent to the CERN SPS committee, CERN-SPSC-2013-022 (2013).
B. Döbrich, J. Jaeckel, F. Kahlhoefer, A. Ringwald and K. Schmidt-Hoberg, ALPtraum: ALP production in proton beam dump experiments, JHEP02 (2016) 018 [arXiv:1512.03069] [INSPIRE]. Article Google Scholar
M. Kleban and R. Rabadán, Collider bounds on pseudoscalars coupling to gauge bosons, hep-ph/0510183 [INSPIRE].
S. Knapen, T. Lin, H.K. Lou and T. Melia, Searching for axionlike particles with ultraperipheral heavy-ion collisions, Phys. Rev. Lett.118 (2017) 171801 [arXiv:1607.06083] [INSPIRE]. ArticleADS Google Scholar
A. Djouadi, P.M. Zerwas and J. Zunft, Search for light pseudoscalar Higgs bosons in Z decays, Phys. Lett.B 259 (1991) 175 [INSPIRE]. ArticleADS Google Scholar
G. Rupak and E.H. Simmons, Limits on pseudoscalar bosons from rare Z decays at LEP, Phys. Lett.B 362 (1995) 155 [hep-ph/9507438] [INSPIRE].
E. Izaguirre, T. Lin and B. Shuve, Searching for axionlike particles in flavor-changing neutral current processes, Phys. Rev. Lett.118 (2017) 111802 [arXiv:1611.09355] [INSPIRE]. ArticleADS Google Scholar
B.A. Dobrescu, G.L. Landsberg and K.T. Matchev, Higgs boson decays to CP odd scalars at the Tevatron and beyond, Phys. Rev.D 63 (2001) 075003 [hep-ph/0005308] [INSPIRE].
B.A. Dobrescu and K.T. Matchev, Light axion within the next-to-minimal supersymmetric standard model, JHEP09 (2000) 031 [hep-ph/0008192] [INSPIRE].
S. Chang, P.J. Fox and N. Weiner, Visible cascade Higgs decays to four photons at hadron colliders, Phys. Rev. Lett.98 (2007) 111802 [hep-ph/0608310] [INSPIRE].
P. Draper and D. McKeen, Diphotons from tetraphotons in the decay of a 125 GeV Higgs at the LHC, Phys. Rev.D 85 (2012) 115023 [arXiv:1204.1061] [INSPIRE]. ADS Google Scholar
CMS collaboration, Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states, Phys. Lett.B 726 (2013) 564 [arXiv:1210.7619] [INSPIRE].
CMS collaboration, Search for Higgs decays to new light bosons in boosted τ final states, CMS-PAS-HIG-14-022 (2014).
CMS collaboration, Search for exotic decays of the Higgs boson to a pair of new light bosons with two muon and two b jets in final states, CMS-PAS-HIG-14-041 (2014).
ATLAS collaboration, Search for new phenomena in events with at least three photons collected in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J.C 76 (2016) 210 [arXiv:1509.05051] [INSPIRE].
CMS collaboration, Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into τ leptons in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP01 (2016) 079 [arXiv:1510.06534] [INSPIRE].
CMS collaboration, A search for beyond standard model light bosons decaying into muon pairs, CMS-PAS-HIG-16-035 (2016).
CMS collaboration, Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP10 (2017) 076 [arXiv:1701.02032] [INSPIRE].
CMS collaboration, Search for neutral resonances decaying into a Z boson and a pair of b jets or τ leptons, Phys. Lett.B 759 (2016) 369 [arXiv:1603.02991] [INSPIRE].
ATLAS collaboration, Search for new light gauge bosons in Higgs boson decays to four-lepton final states in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector at the LHC, Phys. Rev.D 92 (2015) 092001 [arXiv:1505.07645] [INSPIRE].
M. Bauer, M. Neubert and A. Thamm, LHC as an axion factory: probing an axion explanation for (g − 2) μwith exotic Higgs decays, Phys. Rev. Lett.119 (2017) 031802 [arXiv:1704.08207] [INSPIRE]. ArticleADS Google Scholar
M. Bauer, M. Neubert and A. Thamm, The “forgotten” decay S → Z + h as a CP analyzer, arXiv:1607.01016 [INSPIRE].
W.A. Bardeen, S.H.H. Tye and J.A.M. Vermaseren, Phenomenology of the new light Higgs boson search, Phys. Lett.B 76 (1978) 580. ArticleADS Google Scholar
W.A. Bardeen, R.D. Peccei and T. Yanagida, Constraints on variant axion models, Nucl. Phys.B 279 (1987) 401 [INSPIRE]. ArticleADS Google Scholar
S.A. Larin, The Renormalization of the axial anomaly in dimensional regularization, Phys. Lett.B 303 (1993) 113 [hep-ph/9302240] [INSPIRE].
E.C. Poggio, H.R. Quinn and S. Weinberg, Smearing the quark model, Phys. Rev.D 13 (1976) 1958 [INSPIRE]. ADS Google Scholar
M.A. Shifman, Quark hadron duality, in At the frontier of particle physics, M. Shifman ed., World Scientific, Singapore (2001), hep-ph/0009131 [INSPIRE].
L. Calibbi and G. Signorelli, Charged lepton flavour violation: an experimental and theoretical introduction, arXiv:1709.00294 [INSPIRE].
M. Millea, L. Knox and B. Fields, New bounds for axions and axion-like particles with keV-GeV masses, Phys. Rev.D 92 (2015) 023010 [arXiv:1501.04097] [INSPIRE]. ADS Google Scholar
G.G. Raffelt, Astrophysical axion bounds diminished by screening effects, Phys. Rev.D 33 (1986) 897 [INSPIRE]. ADS Google Scholar
G.G. Raffelt and D.S.P. Dearborn, Bounds on hadronic axions from stellar evolution, Phys. Rev.D 36 (1987) 2211 [INSPIRE]. ADS Google Scholar
A. Payez, C. Evoli, T. Fischer, M. Giannotti, A. Mirizzi and A. Ringwald, Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles, JCAP02 (2015) 006 [arXiv:1410.3747] [INSPIRE]. ArticleADS Google Scholar
J. Jaeckel, P.C. Malta and J. Redondo, Decay photons from the ALP burst of type-II supernovae, arXiv:1702.02964 [INSPIRE].
Y. Inoue, Y. Akimoto, R. Ohta, T. Mizumoto, A. Yamamoto and M. Minowa, Search for solar axions with mass around 1 eV using coherent conversion of axions into photons, Phys. Lett.B 668 (2008) 93 [arXiv:0806.2230] [INSPIRE]. ArticleADS Google Scholar
CAST collaboration, E. Arik et al., Probing eV-scale axions with CAST, JCAP02 (2009) 008 [arXiv:0810.4482] [INSPIRE].
E.M. Riordan et al., A search for short lived axions in an electron beam dump experiment, Phys. Rev. Lett.59 (1987) 755 [INSPIRE]. ArticleADS Google Scholar
J.D. Bjorken et al., Search for neutral metastable penetrating particles produced in the SLAC beam dump, Phys. Rev.D 38 (1988) 3375 [INSPIRE]. ADS Google Scholar
CLEO collaboration, R. Balest et al., Y(1_s_) → γ + noninteracting particles, Phys. Rev.D 51 (1995) 2053 [INSPIRE].
BaBar collaboration, P. del Amo Sanchez et al., Search for production of invisible final states in single-photon decays of Y(1_S_), Phys. Rev. Lett.107 (2011) 021804 [arXiv:1007.4646] [INSPIRE].
ATLAS collaboration, Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC, Nature Phys.13 (2017) 852 [arXiv:1702.01625] [INSPIRE].
R. Essig, R. Harnik, J. Kaplan and N. Toro, Discovering new light states at neutrino experiments, Phys. Rev.D 82 (2010) 113008 [arXiv:1008.0636] [INSPIRE]. ADS Google Scholar
H. Merkel et al., Search at the Mainz Microtron for light massive gauge bosons relevant for the muon g − 2 anomaly, Phys. Rev. Lett.112 (2014) 221802 [arXiv:1404.5502] [INSPIRE]. ArticleADS Google Scholar
BaBar collaboration, J.P. Lees et al., Search for a dark photon in e + e − collisions at BaBar, Phys. Rev. Lett.113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
Y.-S. Liu and G.A. Miller, Validity of the Weizsäcker-Williams approximation and the analysis of beam dump experiments: Production of an axion, a dark photon, or a new axial-vector boson, Phys. Rev.D 96 (2017) 016004 [arXiv:1705.01633] [INSPIRE]. ADS Google Scholar
BaBar collaboration, J.P. Lees et al., Search for a muonic dark force at BABAR, Phys. Rev.D 94 (2016) 011102 [arXiv:1606.03501] [INSPIRE].
Muon g-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev.D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
J.P. Leveille, The second order weak correction to (g − 2) of the muon in arbitrary gauge models, Nucl. Phys.B 137 (1978) 63 [INSPIRE]. ArticleADS Google Scholar
H.E. Haber, G.L. Kane and T. Sterling, The fermion mass scale and possible effects of Higgs bosons on experimental observables, Nucl. Phys.B 161 (1979) 493 [INSPIRE]. ArticleADS Google Scholar
CMS collaboration, Search for a Higgs boson decaying into a Z and a photon in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, Phys. Lett.B 726 (2013) 587 [arXiv:1307.5515] [INSPIRE].
ATLAS collaboration, Search for Higgs boson decays to a photon and a Z boson in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS detector, Phys. Lett.B 732 (2014) 8 [arXiv:1402.3051] [INSPIRE].
LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].
T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Phenomenology of the little Higgs model, Phys. Rev.D 67 (2003) 095004 [hep-ph/0301040] [INSPIRE].
M. Perelstein, M.E. Peskin and A. Pierce, Top quarks and electroweak symmetry breaking in little Higgs models, Phys. Rev.D 69 (2004) 075002 [hep-ph/0310039] [INSPIRE].
A. Pierce, J. Thaler and L.-T. Wang, Disentangling dimension six operators through di-Higgs boson production, JHEP05 (2007) 070 [hep-ph/0609049] [INSPIRE].
ATLAS and CMS collaboration, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
ATLAS collaboration, Projections for measurements of Higgs boson signal strengths and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2014-016 (2014).
ATLAS collaboration, Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector, JHEP11 (2015) 206 [arXiv:1509.00672] [INSPIRE].
CMS collaboration, Searches for invisible decays of the Higgs boson in pp collisions at \( \sqrt{s}=7 \) , 8 and 13 TeV, JHEP02 (2017) 135 [arXiv:1610.09218] [INSPIRE].
ATLAS collaboration, Search for a Higgs boson decaying to four photons through light CP-odd scalar coupling using 4.0 fb −1 of 7 TeV pp collision data taken with ATLAS detector at the LHC, ATLAS-CONF-2012-079 (2012).
M. Gonzalez-Alonso and G. Isidori, The h → 4_l spectrum at low m_ 34 : standard model vs. light new physics, Phys. Lett.B 733 (2014) 359 [arXiv:1403.2648] [INSPIRE].
M. Chala, M. Duerr, F. Kahlhoefer and K. Schmidt-Hoberg, Tricking Landau-Yang: how to obtain the diphoton excess from a vector resonance, Phys. Lett.B 755 (2016) 145 [arXiv:1512.06833] [INSPIRE]. ArticleADS Google Scholar
ATLAS collaboration, Search for Higgs bosons decaying to aa in the μμττ final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS experiment, Phys. Rev.D 92 (2015) 052002 [arXiv:1505.01609] [INSPIRE].
ATLAS collaboration, Search for the Higgs boson produced in association with a W boson and decaying to four b-quarks via two spin-zero particles in pp collisions at 13 TeV with the ATLAS detector, Eur. Phys. J.C 76 (2016) 605 [arXiv:1606.08391] [INSPIRE].
TLEP Design Study Working Group collaboration, M. Bicer et al., First look at the physics case of TLEP, JHEP01 (2014) 164 [arXiv:1308.6176] [INSPIRE].
SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group, L3 collaboration, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept.427 (2006) 257 [hep-ex/0509008] [INSPIRE].
L3 collaboration, M. Acciarri et al., Search for anomalous Z → γγγ events at LEP, Phys. Lett.B 345 (1995) 609 [INSPIRE].
DELPHI collaboration, P. Abreu et al., Measurement of the e + e − → γγ(γ) cross-section at LEP energies, Phys. Lett.B 327 (1994) 386 [INSPIRE].
CDF collaboration, T.A. Aaltonen et al., First search for exotic Z boson decays into photons and neutral pions in hadron collisions, Phys. Rev. Lett.112 (2014) 111803 [arXiv:1311.3282] [INSPIRE].
OPAL collaboration, P.D. Acton et al., A measurement of photon radiation in lepton pair events from Z 0 decays, Phys. Lett.B 273 (1991) 338 [INSPIRE].
ATLAS collaboration, Measurement of W ± and Z-boson production cross sections in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett.B 759 (2016) 601 [arXiv:1603.09222] [INSPIRE].
M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev.D 46 (1992) 381 [INSPIRE]. ADS Google Scholar
M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, Reading U.S.A. (1995). Google Scholar
Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J.C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
OPAL collaboration, G. Abbiendi et al., Tests of the standard model and constraints on new physics from measurements of fermion pair production at 189 GeV to 209 GeV at LEP, Eur. Phys. J.C 33 (2004) 173 [hep-ex/0309053] [INSPIRE].
P. Janot, Direct measurement of α QED(m 2 Z ) at the FCC-ee, JHEP02 (2016) 053 [Erratum ibid.11 (2017) 164] [arXiv:1512.05544] [INSPIRE].
J. de Blas et al., Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future, JHEP12 (2016) 135 [arXiv:1608.01509] [INSPIRE]. ArticleADS Google Scholar
A. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys.B 234 (1984) 189 [INSPIRE]. ArticleADS Google Scholar
M.A. Luty, Naive dimensional analysis and supersymmetry, Phys. Rev.D 57 (1998) 1531 [hep-ph/9706235] [INSPIRE].
A.G. Cohen, D.B. Kaplan and A.E. Nelson, Counting 4_π’s in strongly coupled supersymmetry_, Phys. Lett.B 412 (1997) 301 [hep-ph/9706275] [INSPIRE].
F. Feruglio, The chiral approach to the electroweak interactions, Int. J. Mod. Phys.A 8 (1993) 4937 [hep-ph/9301281] [INSPIRE].
K. Fujikawa, Path integral measure for gauge invariant fermion theories, Phys. Rev. Lett.42 (1979) 1195 [INSPIRE]. ArticleADS Google Scholar
K. Fujikawa, Path integral for gauge theories with fermions, Phys. Rev.D 21 (1980) 2848 [Erratum ibid.D 22 (1980) 1499] [INSPIRE].
L.M. Krauss and M.B. Wise, Constraints on shortlived axions from the decay π + → e + e − e + neutrino, Phys. Lett.B 176 (1986) 483 [INSPIRE]. ArticleADS Google Scholar
R. Horsley et al., Isospin splittings of meson and baryon masses from three-flavor lattice QCD + QED, J. Phys.G 43 (2016) 10LT02 [arXiv:1508.06401] [INSPIRE].
MILC collaboration, S. Basak et al., Electromagnetic effects on the light hadron spectrum, J. Phys. Conf. Ser.640 (2015) 012052 [arXiv:1510.04997] [INSPIRE].
M. Beneke, G. Buchalla, M. Neubert and C.T. Sachrajda, QCD factorization for exclusive, nonleptonic B meson decays: General arguments and the case of heavy light final states, Nucl. Phys.B 591 (2000) 313 [hep-ph/0006124] [INSPIRE].
R. Kaiser and H. Leutwyler, Large-Ncin chiral perturbation theory, Eur. Phys. J.C 17 (2000) 623 [hep-ph/0007101] [INSPIRE].
S. Knapen, T. Lin, H.K. Lou and T. Melia, LHC limits on axion-like particles from heavy-ion collisions, arXiv:1709.07110.
M.J. Dolan et al., Revised constraints and Belle II sensitivity for visible and invisible axion-like particles, arXiv:1709.00009u.