Quasimöbius maps (original) (raw)

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L. V. Ahlfors,Complex Analysis, 2nd edition, McGraw-Hill, 1966.
  2. C. Bessaga and A. Pełczyński,Selected topics in infinite-dimensional topology, Monografie Matematyczne 58, PWN, Warsaw, 1975.
  3. M. Frunza,The scalar cross ratio and quasiconformal mappings in Hilbert spaces, Mathematica (Cluj)25 (1983), 143–157.
    MathSciNet Google Scholar
  4. M. FrunzĂ and Ş. FrunzĂ,La quasiconformité des inversions dans un espace normé, Rev. Roumaine Math. Pures Appl.29 (1984), 575–579.
    MathSciNet MATH Google Scholar
  5. F. W. Gehring,Extension of quasiconformal mappings in three space, J. Analyse Math.14 (1965), 171–182.
    Article MATH MathSciNet Google Scholar
  6. F. W. Gehring and O. Martio,Quasiextremal distance domains and extension of quasiconformal mappings, to appear.
  7. O. Martio,Definitions for uniform domains, Ann. Acad. Sci. Fenn. Ser. A I Math.5 (1980), 197–205.
    MathSciNet MATH Google Scholar
  8. O. Martio and J. Sarvas,Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math.4 (1979), 383–401.
    MathSciNet MATH Google Scholar
  9. H. Renggli,DoppelverhÄltnisse und quasikonforme Abbildungen, Comment. Math. Helv.43 (1968), 161–175.
    Article MATH MathSciNet Google Scholar
  10. P. Tukia and J. VÄisÄlÄ,Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math.5 (1980), 97–114.
    MathSciNet MATH Google Scholar
  11. P. Tukia and J. VÄisÄlÄ,Quasiconformal extension from dimension n to n +1, Ann. of Math.115 (1982), 331–348.
    Article MathSciNet Google Scholar
  12. P. Tukia and J. VÄisÄlÄ,Extension of embeddings close to isometries or similarities, Ann. Acad. Sci. Fenn. Ser. A I Math.9 (1984), 153–175.
    MathSciNet MATH Google Scholar
  13. J. VÄisÄlÄ,Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Mathematics 229, Springer-Verlag, Berlin, 1971.
    Google Scholar
  14. J. VÄisÄlÄ,Quasi-symmetric embeddings in euclidean spaces, Trans. Am. Math. Soc.264 (1981), 191–204.
    Article MATH Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics, University of Helsinki, Helsinki, Finland
    Jussi VÄisÄlÄ

Authors

  1. Jussi VÄisÄlÄ
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

VÄisÄlÄ, J. Quasimöbius maps.J. Anal. Math. 44, 218–234 (1984). https://doi.org/10.1007/BF02790198

Download citation

Keywords