The Summation Formulae of Euler–Maclaurin, Abel–Plana, Poisson, and their Interconnections with the Approximate Sampling Formula of Signal Analysis (original) (raw)

References

  1. Abel, N.H.: Solution de quelques problèmes à l’aide d’intégrales définies. In: Sylow, L., Lie, S. (eds.) Œuvres complètes d’Abel, vol. I, pp. 11–27. Johnson, New York (Reprint of the Nouvelle éd., Christiania, 1881) (1965)
  2. Apostol T.M.: Mathematical Analysis, 2nd edn. Addison-Wesley Publishing Company, Reading (1974)
    MATH Google Scholar
  3. Apostol T.M.: An elementary view of Euler’s summation formula. Am. Math. Monthly 106(5), 409–418 (1999)
    Article MathSciNet MATH Google Scholar
  4. Berndt B.C.: Ramanujan’s Notebooks Part. I. Springer, New York (1985)
    Book MATH Google Scholar
  5. Bochner S.: Vorlesungen über Fouriersche Integrale. Chelsea Publishing Co., New York (1948)
    MATH Google Scholar
  6. Brown, J.L. Jr.: On the error in reconstructing a non-bandlimited function by means of the bandpass sampling theorem. J. Math. Anal. Appl. 18, 75–84 [Erratum: J. Math. Anal. Appl. 21, 699 (1968)] (1967).
    Article MathSciNet MATH Google Scholar
  7. Butzer, P.L., Ferreira, P.J.S.G., Higgins, J.R., Schmeisser, G., Stens, R.L.: The sampling theorem, Poisson’s summation formula, general Parseval formula, reproducing kernel formula and the Paley–Wiener theorem for bandlimited signals—their interconnections. Appl. Anal. (in press). doi:10.1080/00036811003627567
  8. Butzer P.L., Gessinger A.: The approximate sampling theorem, Poisson’s sum formula, a decomposition theorem for Parseval’s equation and their interconnections. Ann. Numer. Math. 4(1–4), 143–160 (1997)
    MathSciNet MATH Google Scholar
  9. Butzer, P.L., Hauss, M.: Applications of sampling theory to combinatorial analysis, Stirling numbers, special functions and the Riemann zeta function. In: Higgins, J.R., Stens, R.L. (eds.) Sampling Theory in Fourier and Signal Analysis: Advanced Topics, vol. 2. Oxford University Press, Oxford (1999)
  10. Butzer P.L., Higgins J.R., Stens R.L.: Classical and approximate sampling theorems: studies in the \({L^p({\mathbb R})}\) and the uniform norm. J. Approx. Theory 137(2), 250–263 (2005)
    Article MathSciNet MATH Google Scholar
  11. Butzer P.L., Nessel R.J.: Fourier Analysis and Approximation. Birkhäuser Verlag, Basel, Academic Press, New York (1971)
    Book MATH Google Scholar
  12. Butzer, P.L., Ries, S., Stens, R.L.: Shannon’s sampling theorem, Cauchy’s integral formula, and related results. In: Butzer, P.L., Stens, R.L., Sz.-Nagy, B. (eds.) Anniversary Volume on Approximation Theory and Functional Analysis (Proc. Conf., Oberwolfach, Germany, 1983), ISNM, vol. 65, pp. 363–377. Birkhäuser Verlag, Basel (1984)
  13. Butzer, P.L., Schmeisser, G., Stens, R.L.: An introduction to sampling analysis. In: F. Marvasti (ed.) Nonuniform Sampling—Theory and Practice, Information Technology: Transmission, Processing and Storage, pp. 17–121. Kluwer Academic/Plenum Publishers, New York, 2001
  14. Butzer P.L., Splettstösser W.: A sampling theorem for duration-limited functions with error estimates. Information and Control 34(1), 55–65 (1977)
    Article MathSciNet MATH Google Scholar
  15. Butzer, P.L., Stens, R.L.: The Poisson summation formula, Whittaker’s cardinal series and approximate integration. In: Ditzian, Z., Meir, A., Riemenschneider, S.D., Sharma A. (eds.) Second Edmonton Conference on Approximation Theory (Edmonton, Alta., 1982), CMS Conference Proceedings, vol. 3, pp. 19–36. American Mathematical Society, Providence (1983)
  16. Butzer, P.L., Stens, R.L.: The Euler–MacLaurin summation formula, the sampling theorem, and approximate integration over the real axis. Linear Algebra Appl. 52/53, 141–155 (1983)
    Article MathSciNet MATH Google Scholar
  17. Candelpergher B., Coppo M.A., Delabaere E.: La sommation de Ramanujan (The Ramanujan summation). Enseign. Math. (2) 43(1–2), 93–132 (1997)
    MathSciNet MATH Google Scholar
  18. Candelpergher B., Gadiyar H.G., Padma R.: Ramanujan summation and the exponential generating function \({\sum^\infty_{k=0} \frac{z^k}{k!} \zeta'(-k)}\). Ramanujan J. 21(1), 99–122 (2010)
    Article MathSciNet MATH Google Scholar
  19. Dahlquist, G.: On summation formulas due to Plana, Lindelöf and Abel, and related Gauss-Christoffel rules, I, II, III. BIT37(2), 256–295 (1997), 37(4), 804–832 (1997), 39(1), 51–78 (1999)
    Article MathSciNet MATH Google Scholar
  20. de La Vallée Poussin, C.-J.: Collected Works/Œuvres Scientifiques, vol. III. Edited by Butzer, P.L., Mawhin, J., Vetro, P. Académie Royale de Belgique, Brussels, and Circolo Matematico di Palermo, Palermo (2004)
  21. Dowling J.P.: The mathematics of the Casimir effect. Math. Mag. 62(5), 324–331 (1989)
    Article MathSciNet Google Scholar
  22. Dym, H., McKean, H.P.: Fourier Series and Integrals. Probability and Mathematical Statistics, vol. 14. Academic Press, New York (1972)
  23. Euler, L.: Methodus generalis summandi progressiones (A general method for summing series). Commentarii academiae scientiarum Petropolitanae 6, 68–97. Opera Omnia, ser. 1, vol. XIV, pp. 42–72. Presented to the St. Petersburg Academy on June 20, 1732. English translation by I. Bruce. http://www.math.dartmouth.edu/~euler/pages/E025.html (1738)
  24. Euler, L.: Inventio summae cuiusque seriei ex dato termino generali (Finding the sum of any series from a given general term). Commentarii academiae scientiarum Petropolitanae, 8, 9–22. Opera Omnia, ser. 1, vol. XIV, pp. 108–123. Presented to the St. Petersburg Academy on October 13, 1735. English translation by J. Bell. http://www.math.dartmouth.edu/~euler/pages/E047.html (1741)
  25. Gauss, C.F.: Werke, XIII. Band, herausgegeben von der Königlichen Gesellschaft der Wissenschaften zu Göttingen (Collected works, vol. VIII). Teubner Verlag, Leipzig, 1900. Reprint: Georg Olms Verlag, Hildesheim, 1973
  26. Gautschi W.: Leonhard Eulers Umgang mit langsam konvergenten Reihen (Leonhard Euler’s handling of slowly convergent series). Elem. Math. 62(4), 174–183 (2007)
    Article MathSciNet MATH Google Scholar
  27. Gautschi W.: Leonhard Euler: his life, the man, and his works. SIAM Rev. 50(1), 3–33 (2008)
    Article MathSciNet MATH Google Scholar
  28. Gautschi, W.: Alexander M. Ostrowski (1893–1986), His life, work, and students. In: Colbois, B., Riedtmann, C., Schroeder, V. (eds.) Schweizerische Mathematische Gesellschaft–Société Mathématique Suisse–Swiss Mathematical Society 1910, pp. 257-278. EMS Publishing House, Zürich (2010)
  29. Hardy G.H.: Divergent Series. Clarendon Press, Oxford (1949)
    MATH Google Scholar
  30. Henrici, P.: Applied and Computational Complex Analysis, vol. 1, Power Series—Integration—Conformal Mapping—Location of Zeros. John Wiley & Sons, New York (1974)
  31. Heuser, H.: Lehrbuch der Analysis, vol. I, 14th edn. B. G. Teubner, Stuttgart (2001)
  32. Higgins J.R.: Two basic formulae of Euler and their equivalence to Tschakalov’s sampling theorem. Sampl. Theory Signal Image Process. 2(3), 259–270 (2003)
    MathSciNet MATH Google Scholar
  33. Higgins J.R.: Some groupings of equivalent results in analysis that include sampling principles. Sampl. Theory Signal Image Process. 4(1), 19–31 (2005)
    MathSciNet MATH Google Scholar
  34. Higgins J.R.: The Riemann zeta function and the sampling theorem. Sampl. Theory Signal Image Process. 8(1), 1–12 (2009)
    MathSciNet MATH Google Scholar
  35. Higgins J.R., Schmeisser G., Voss J.J.: The sampling theorem and several equivalent results in analysis. J. Comput. Anal. Appl. 2(4), 333–371 (2000)
    MathSciNet MATH Google Scholar
  36. Jacobi, C.G.J.: Gesammelte Werke, I. Band. Herausgegeben von C.W. Borchardt (Collected works, vol. I). G. Reimer, Berlin (1881)
  37. Lindelöf, E.: Le Calcul des résidus et ses applications à la théorie des fonctions. Gauthier-Villars, Paris (Reprint: Chelsea Publ., New York, 1947) (1905)
  38. Maclaurin, C.: A treatise of fluxions, 2 vols. T. W. and T. Ruddimans, 1742. Nabu Press, Edinburgh (Reproduction) (2010)
  39. Mills S.: The independent derivations by Euler, Leonhard and Maclaurin, Colin of the Euler–Maclaurin summation formula. Arch. Hist. Exact Sci. 33(1–3), 1–13 (1985)
    Article MathSciNet MATH Google Scholar
  40. Mostepanenko V., Trunov N.N.: The Casimir Effect and Its Applications. Clarendon Press, Oxford (1997)
    Google Scholar
  41. Nikol’skiĭ, S.M.: Approximation of Functions of Several Variables and Imbedding Theorems. Die Grundlehren der Mathematischen Wissenschaften, vol. 205. Springer, New York (Translated from the Russian by John M. Danskin, Jr.) (1975)
  42. Ostrowski, A.M.: Vorlesungen über Differential- und Integralrechnung, vol. I–III. Birkhäuser Verlag, Basel, 1st edn. (1945–1954), 2nd edn. (1960–1967)
  43. Ostrowski, A.M.: Collected Mathematical Papers, vol. 1–6. Birkhäuser Verlag, Basel (1983–1985)
  44. Plana G.A.A.: Sur une nouvelle expression analytique des nombres Bernoulliens, propre à exprimer en termes finis la formule générale pour la sommation des suites. Mem. Accad. Sci. Torino (1) 25, 403–418 (1820)
    Google Scholar
  45. Prellberg, T.: The mathematics of the Casimir effect, 96 p. Annual Lectures, School of Mathematical Sciences, Queen Mary, Univ. of London, London (2007)
  46. Rahman, Q.I., Schmeisser, G.: On a Gaussian quadrature formula for entire functions of exponential type. In: Collatz, L., Meinardus, G., Nürnberger, G. (eds.) Numerical Methods of Approximation Theory, vol. 8 (Proceedings of a Conference, Oberwolfach, Germany, 1986), ISNM, vol. 81, pp. 155–168. Birkhäuser Verlag, Basel (1987)
  47. Rahman Q.I., Schmeisser G.: Quadrature formulae and functions of exponential type. Math. Comput. 54(189), 245–270 (1990)
    Article MathSciNet MATH Google Scholar
  48. Rahman Q.I., Schmeisser G.: A quadrature formula for entire functions of exponential type. Math. Comput. 63(207), 215–227 (1994)
    Article MathSciNet MATH Google Scholar
  49. Rahman Q.I., Schmeisser G.: The summation formulae of Poisson, Plana, Euler–Maclaurin and their relationship. J. Math. Sci., Delhi 28, 151–171 (1994)
    MATH Google Scholar
  50. Saharian, A.A.: The generalized Abel–Plana formula with applications to Bessel functions and Casimir effect. CERN document server, preprint hep-th/0002239. http://cdsweb.cern.ch/record/428795/files/0002239.pdf (2000)
  51. Schuster W.: Ein Beweis der Funktionalgleichung der Riemannschen Zetafunktion (A proof of the functional equation of the Riemann zeta function). Arch. Math. (Basel) 73(4), 273–275 (1999)
    Article MathSciNet MATH Google Scholar
  52. Stenger F.: Integration formulae based on the trapezoidal formula. J. Inst. Math. Appl. 12, 103–114 (1973)
    Article MathSciNet MATH Google Scholar
  53. Terras, A.: Harmonic Analysis on Symmetric Spaces and Applications, vol. I. Springer, New York (1985)
  54. Weiss P.: An estimate of the error arising from misapplication of the sampling theorem. Notices Am. Math. Soc. 10, 351 (1963)
    Google Scholar
  55. Yoshino, K.: A relation among Ramanujan’s integral formula, Shannon’s sampling theorem and Plana’s summation formula. In: Aliyev Azeroğlu, T., Tamrazov, P.M. (eds.) Complex Analysis and Potential Theory (Proc. Conf. satellite to ICM 2006, Gebze, Turkey, 2006), pp. 191–197. World Scientific Publishing Co., Hackensack (2007)
  56. Zygmund, A.: Trigonometric Series, vols. I, II, 2nd edn. Cambridge University Press, London (reprinted with corrections and some additions) (1968)

Download references