Comparative performance of wavelet-based neural network approaches (original) (raw)
Abstract
An agriculture-dominated developing country like India has been always in need of efficient and reliable time series forecasting methodologies to describe various agricultural phenomenons, whereas agricultural price forecasting continue to be the challenging areas in this domain. The observed features of many temporal price data set constitute complex nonlinearity, and modeling these features often go beyond the capability of Box–Jenkins autoregressive integrated moving average methodology. Moreover, despite the popularity and sheer power of traditional neural network model, the empirical forecasting performance of this model has not been found satisfactory in all cases. To address the problem, wavelet-based modeling approach is recently upsurging. Present study discusses two wavelet-based neural network approaches envisaging monthly wholesale onion price of three markets, namely Bangalore, Hubli, and Solapur. Wavelet-based decomposition makes it possible to describe the useful pattern of the series from both global as well as local aspects and found to be highly proficient in denoising and capturing the inherent pattern of the series through a distinctive approach. Besides, wavelet method can also be used as a tool for function approximation. The improvement upon time-delay neural network also be made up to a great extent through using wavelet-based approaches as exhibited through proper empirical evidence.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime Subscribe now
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.
References
- Anjoy P, Paul RK (2017) Wavelet based hybrid approach for forecasting volatile potato price. J Indian Soc Agric Stat 71(1):7–14
MathSciNet Google Scholar - Anjoy P, Paul RK, Sinha K, Paul AK, Ray M (2017) A hybrid wavelet based neural networks model for predicting monthly wpi of pulses in India. Indian J Agric Sci 87(6):834–839
Google Scholar - Adhikari R, Agrawal RK (2014) A combination of artificial neural network and random walk models for financial time series forecasting. Neural Comput Appl 24(6):1441–1449
Article Google Scholar - Alexandridis AK, Zapranis AD (2013) Wavelet neural networks: a practical guide. Neural Netw 42:1–27
Article MATH Google Scholar - Antoniadis A (1997) Wavelets in statistics: a review. J Ita Stat Soc 6:97–144
Article Google Scholar - Díaz-Robles LA, Ortega JC, Fu JS, Reed GD, Chow JC, Watson JG, Moncada-Herrera JA (2008) A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile. Atmos Environ 42:8331–8340
Article Google Scholar - Farda AK, Akbari-Zadehb MR (2014) A hybrid method based on wavelet, ANN and ARIMA model for short-term load forecasting. J Exp Theor Artif Intell 26(2):167–182
Article Google Scholar - Granger CWJ, Anderson AP (1978) Introduction to bilinear time series models. Vandenhoeck and Ruprecht, Gottingen
Google Scholar - Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, Englewood Cliffs
MATH Google Scholar - Hung NQ, Babel MS, Weesakul S, Tripathi NK (2009) An artificial neural network model for rainfall forecasting in Bangkok, Thailand. Hydrol Earth Syst Sci 13:1413–1425
Article Google Scholar - Kohzadi N, Boyd MS, Kermanshahi B, Kaastra I (1995) A comparison of artificial neural network and time series models for forecasting commodity prices. Neurocomputing 10:169–181
Article MATH Google Scholar - Kuan CM, White H (1994) Artificial neural networks: an econometric perspective. Econ Rev 13:1–91
Article MathSciNet MATH Google Scholar - McLeod AI, Li WK (1983) Diagnostic checking ARMA time series models using squared residual autocorrelations. J Time Ser Anal 4:269–273
Article MathSciNet MATH Google Scholar - Mohammadi K, Eslami HR, Dardashti D (2005) Comparison of regression, ARIMA and ANN models for reservoir inflow forecasting using snowmelt equivalent (a case study of Karaj). J Agric Sci Technol 7:17–30
Google Scholar - Pacelli V, Bevilacqua V, Azzollini M (2011) An artificial neural network model to forecast exchange rates. J Intell Learn Syst Appl 3:57–69
Google Scholar - Paul RK, Prajneshu GH (2013) Statistical modelling for forecasting of wheat yield based on weather variables. Indian J Agric Sci 83(2):180–183
Google Scholar - Paul RK, Das MK (2013) Forecasting of average annual fish landing in Ganga Basin. Fish Chimes 33(3):51–54
Google Scholar - Paul RK, Prajneshu GH (2013) Wavelet frequency domain approach for modelling and forecasting of Indian monsoon rainfall time-series data. J Indian Soc Agric Stat 67(3):319–327
MathSciNet Google Scholar - Paul RK, Alam W, Paul AK (2014) Prospects of livestock and dairy production in India under time series framework. Indian J Anim Sci 84(4):130–134
Google Scholar - Paul RK (2015) ARIMAX-GARCH-WAVELET model for forecasting volatile data. Model Assist Stat Appl 10(3):243–252
Google Scholar - Paul RK, Gurung B, Paul AK (2015) Modelling and forecasting of retail price of arhar dal in Karnal, Haryana. Indian J Agric Sci 85(1):69–72
Google Scholar - Paul RK, Sinha K (2016) Forecasting crop yield: a comparative assessment of ARIMAX and NARX model. RASHI 1(1):77–85
Google Scholar - Percival DB, Walden AT (2000) Wavelet methods for time series analysis. Cambridge University Press, Cambridge
Book MATH Google Scholar - Tong H, Lim KS (1980) Threshold autoregressive, limit cycles and cyclical data. J R Stat Soc Ser B Methodol 42:245–292
MATH Google Scholar - Vidakovic B (1999) Statistical modeling by wavelets. Wiley, New York
Book MATH Google Scholar - Zhang GP (2003) Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50:159–175
Article MATH Google Scholar - Zhang GP, Qi M (2005) Neural network forecasting for seasonal and trend time series. Eur J Oper Res 160(2):501–514
Article MathSciNet MATH Google Scholar
Acknowledgements
We would like to express our sincere thanks and gratitude to the anonymous reviewers for their valuable suggestions that helped us a lot in improving this manuscript.
Author information
Authors and Affiliations
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
Priyanka Anjoy & Ranjit Kumar Paul
Authors
- Priyanka Anjoy
You can also search for this author inPubMed Google Scholar - Ranjit Kumar Paul
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toRanjit Kumar Paul.
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interests regarding the publication of this paper.
Rights and permissions
About this article
Cite this article
Anjoy, P., Paul, R.K. Comparative performance of wavelet-based neural network approaches.Neural Comput & Applic 31, 3443–3453 (2019). https://doi.org/10.1007/s00521-017-3289-9
- Received: 17 August 2016
- Accepted: 15 November 2017
- Published: 22 November 2017
- Issue Date: August 2019
- DOI: https://doi.org/10.1007/s00521-017-3289-9