From aggression to autism: new perspectives on the behavioral sequelae of monoamine oxidase deficiency (original) (raw)
References
Aguinaga D, Medrano M, Vega-Quiroga I, Gysling K, Canela EI, Navarro G, Franco R (2018) Cocaine effects on dopaminergic transmission depend on a balance between sigma-1 and sigma-2 receptor expression. Front Mol Neurosci 11:17 PubMedPubMed Central Google Scholar
Alon A, Schmidt HR, Wood MD, Sahn JJ, Martin SF, Kruse AC (2017) Identification of the gene that codes for the σ(2) receptor. Proc Natl Acad Sci USA 114:7160–7165 CASPubMed Google Scholar
Ambroziak W, Pietruszko R (1991) Human aldehyde dehydrogenase. Activity with aldehyde metabolites of monoamines, diamines, and polyamines. J Biol Chem 266:13011–13018 CASPubMed Google Scholar
Anichtchik O, Sallinen V, Peitsaro N, Panula P (2006) Distinct structure and activity of monoamine oxidase in the brain of zebrafish (Danio rerio). J Comp Neurol 498:593–610 CASPubMed Google Scholar
Arnsten AF (2009) Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci 10:410–422 CASPubMedPubMed Central Google Scholar
Bach AW, Lan NC, Johnson DL, Abell CW, Bembenek ME, Kwan SW, Seeburg PH, Shih JC (1988) cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc Natl Acad Sci USA 85:4934–4938 CASPubMed Google Scholar
Beckmann H, Waldmeier P, Lauber J, Gattaz WF. (1983) Phenylethylamine and monoamine metabolites in CSF of schizophrenics: effects of neuroleptic treatment. J Neural Transm 57: 103–110 CASPubMed Google Scholar
Berry MD (2007) The potential of trace amines and their receptors for treating neurological and psychiatric diseases. Rev Recent Clin Trials 2:3–19 CASPubMed Google Scholar
Black KJ, Hershey T, Koller JM, Videen TO, Mintun MA, Price JL, Perlmutter JS (2002) A possible substrate for dopamine-related changes in mood and behavior: prefrontal and limbic effects of a D3-preferring dopamine agonist. Proc Natl Acad Sci USA 99:17113–17118 CASPubMed Google Scholar
Blanco C, Orensanz-Muñoz L, Blanco-Jerez C, Saiz-Ruiz J (1996) Pathological gambling and platelet MAO activity: a psychobiological study. Am J Psychiatr 153:119–121 CASPubMed Google Scholar
Bond PA, Cundall RL (1977) Properties of monoamine oxidase (MAO) in human blood platelets, plasma, lymphocytes and granulocytes. Clin Chim Acta 80:317–326 CASPubMed Google Scholar
Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C (2001) Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci USA 98:8966–8971 CASPubMed Google Scholar
Bortolato M, Shih JC (2011) Behavioral outcomes of monoamine oxidase deficiency: preclinical and clinical evidence. Int Rev Neurobiol 100:13–42 PubMedPubMed Central Google Scholar
Bortolato M, Chen K, Shih JC (2008) Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev 60:1527–1533 CASPubMedPubMed Central Google Scholar
Bortolato M, Godar SC, Davarian S, Chen K, Shih JC (2009) Behavioral disinhibition and reduced anxiety-like behaviors in monoamine oxidase B-deficient mice. Neuropsychopharmacology 34:2746–2757 CASPubMedPubMed Central Google Scholar
Bortolato M, Godar SC, Melis M, Soggiu A, Roncada P, Casu A, Flore G, Chen K, Frau R, Urbani A, Castelli MP, Devoto P, Shih JC (2012) NMDARs mediate the role of monoamine oxidase A in pathological aggression. J Neurosci 32:8574–8582 CASPubMedPubMed Central Google Scholar
Bortolato M, Godar SC, Tambaro S, Li FG, Devoto P, Coba MP, Chen K, Shih JC (2013a) Early postnatal inhibition of serotonin synthesis results in long-term reductions of perseverative behaviors, but not aggression, in MAO A-deficient mice. Neuropharmacology 75:223–232 CASPubMed Google Scholar
Bortolato M, Godar SC, Alzghoul L, Zhang J, Darling RD, Simpson KL, Bini V, Chen K, Wellman CL, Lin RC, Shih JC (2013b) Monoamine oxidase A and A/B knockout mice display autistic-like features. Int J Neuropsychopharmacol 16:869–888 CASPubMed Google Scholar
Boutet I, Tanguy A, Moraga D (2004) Molecular identification and expression of two non-P450 enzymes, monoamine oxidase A and flavin-containing monooxygenase 2, involved in phase I of xenobiotic biotransformation in the Pacific oyster, Crassostrea gigas. Biochim Biophys Acta 1679:29–36 CASPubMed Google Scholar
Boylan CB, Bennett-Clarke CA, Crissman RS, Mooney RD, Rhoades RW (2000) Clorgyline treatment elevates cortical serotonin and temporarily disrupts the vibrissae-related pattern in rat somatosensory cortex. J Comp Neurol 427: 139–49 CASPubMed Google Scholar
Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA (1993a) Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262:578–580 CASPubMed Google Scholar
Brunner HG, Nelen MR, van Zandvoort P, Abeling NG, van Gennip AH, Wolters EC, Kuiper MA, Ropers HH, van Oost BA (1993b) X-linked borderline mental retardation with prominent behavioral disturbance: phenotype, genetic localization, and evidence for disturbed monoamine metabolism. Am J Hum Genet 52:1032–1039 CASPubMedPubMed Central Google Scholar
Buchsbaum MS, Coursey RD, Murphy DL (1976) The biochemical high-risk paradigm: behavioral and familial correlates of low platelet monoamine oxidase activity. Science 194:339–341 CASPubMed Google Scholar
Buckholtz JW, Meyer-Lindenberg A (2008) MAO A and the neurogenetic architecture of human aggression. Trends Neurosci 31:120–129 CASPubMed Google Scholar
Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S, Muller U, Aguet M, Babinet C, Shih JC (1995) Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268:1763–1766 CASPubMedPubMed Central Google Scholar
Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, Taylor A, Poulton R (2002) Role of genotype in the cycle of violence in maltreated children. Science 297:851–854 CASPubMed Google Scholar
Cerasa A, Gioia MC, Labate A, Lanza P, Magariello A, Muglia M, Quattrone A (2008) MAO A VNTR polymorphism and variation in human morphology: a VBM study. Neuroreport 19:1107–1110 PubMed Google Scholar
Cerasa A, Cherubini A, Quattrone A, Gioia MC, Magariello A, Muglia M, Manna I, Assogna F, Caltagirone C, Spalletta G (2010) Morphological correlates of MAO A VNTR polymorphism: new evidence from cortical thickness measurement. Behav Brain Res 211:118–124 CASPubMed Google Scholar
Chen L, He M, Sibille E, Thompson A, Sarnyai Z, Baker H, Shippenberg T, Toth M (1999) Adaptive changes in postsynaptic dopamine receptors despite unaltered dopamine dynamics in mice lacking monoamine oxidase B. J Neurochem 73:647–655 CASPubMed Google Scholar
Chen K, Holschneider DP, Wu W, Rebrin I, Shih JC (2004) A spontaneous point mutation produces monoamine oxidase A/B knock-out mice with greatly elevated monoamines and anxiety-like behavior. J Biol Chem 279:39645–3965 CASPubMedPubMed Central Google Scholar
Cheng A, Scott AL, Ladenheim B, Chen K, Ouyang X, Lathia JD, Mughal M, Cadet JL, Mattson MP, Shih JC (2010) Monoamine oxidases regulate telencephalic neural progenitors in late embryonic and early postnatal development. J Neurosci 30:10752–10762 CASPubMedPubMed Central Google Scholar
Coccini T, Crevani A, Rossi G, Assandri F, Balottin U, Nardo RD, Manzo L (2009) Reduced platelet monoamine oxidase type B activity and lymphocyte muscarinic receptor binding in unmedicated children with attention deficit hyperactivity disorder. Biomarkers 14:513–522 CASPubMed Google Scholar
Collins FA, Murphy DL, Reiss AL, Sims KB, Lewis JG, Freund L, Karoum F, Zhu D, Maumenee IH, Antonarakis SE (1992) Clinical, biochemical, and neuropsychiatric evaluation of a patient with a contiguous gene syndrome due to a microdeletion Xp11.3 including the Norrie disease locus and monoamine oxidase (MAOA and MAOB) genes. Am J Med Genet 42:127–134 CASPubMed Google Scholar
Contini V, Marques FZ, Garcia CE, Hutz MH, Bau CH (2006) MAOA-uVNTR polymorphism in a Brazilian sample: further support for the association with impulsive behaviors and alcohol dependence. Am J Med Genet B Neuropsychiatr Genet 141:305–308 Google Scholar
Dahlstroem A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl 232:1–55 Google Scholar
Deckert J, Catalano M, Syagailo YV, Bosi M, Okladnova O, Di Bella D, Nöthen MM, Maffei P, Franke P, Fritze J, Maier W, Propping P, Beckmann H, Bellodi L, Lesch K-P (1999) Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Hum Mol Genet 8:621–624 CASPubMed Google Scholar
Denney RM, Koch H, Craig IW (1999) Association between monoamine oxidase A activity in human male skin fibroblasts and genotype of the MAO-A promoter-associated variable number tandem repeat. Hum Genet 105:542–551 CASPubMed Google Scholar
Donnelly CH, Murphy DL (1977) Substrate- and inhibitor-related characteristics of human platelet. Biochem Pharmacol 26:853–858 CASPubMed Google Scholar
Doran N, Sanders PE, Bekman NM, Worley MJ, Monreal TK, McGee E, Cummins K, Brown SA (2011) Mediating influences of negative affect and risk perception on the relationship between sensation seeking and adolescent cigarette smoking. Nicotine Tob Res 13:457–465 PubMedPubMed Central Google Scholar
Dubrovina NI, Popova NK, Gilinskii MA, Tomilenko RA, Seif I (2006) Acquisition and extinction of a conditioned passive avoidance reflex in mice with genetic knockout of monoamine oxidase A. Neurosci Behav Physiol 36:335–339 CASPubMed Google Scholar
Edmondson DE, Mattevi A, Binda C, Li M, Hubálek F (2004) Structure and mechanism of monoamine oxidase. Curr Med Chem 11:1983–1993 CASPubMed Google Scholar
Ekblom J, Jossan SS, Bergström M, Oreland L, Walum E, Aquilonius SM (1993) Monoamine oxidase-B in astrocytes. Glia 8:122–132 CASPubMed Google Scholar
Erzurumlu RS, Gaspar P (2012) Development and critical period plasticity of the barrel cortex. Eur J Neurosci 35:1540–1553 PubMedPubMed Central Google Scholar
Feldstein A, Williamson O (1968) 5-Hydroxytryptamine metabolism in rat brain and liver homogenates. Br J Pharmacol 34(1):38–42 CASPubMedPubMed Central Google Scholar
Fitzpatrick PF, Chadegani F, Zhang S, Roberts KM, Hinck CS (2016) Mechanism of the flavoprotein l-hydroxynicotine oxidase: kinetic mechanism, substrate specificity, reaction product, and roles of active-site residues. Biochemistry 55:697–703 CASPubMedPubMed Central Google Scholar
Foley DL, Eaves LJ, Wormley B, Silberg JL et al (2004) Childhood adversity, monoamine oxidase a genotype, and risk for conduct disorder. Arch Gen Psychiatr 61:738–744 CASPubMed Google Scholar
Fontanilla D, Johannessen M, Hajipour AR, Cozzi NV, Jackson MB, Ruoho AE (2009) The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science 323:934–937 CASPubMedPubMed Central Google Scholar
Fowler CJ, von Knorring L, Oreland L (1980) Platelet monoamine oxidase activity in sensation seekers. Psychiatr Res 3:273–279 CAS Google Scholar
Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, MacGregor R, Alexoff D, Wolf AP, Warner D, Cilento R, Zezulkova I (1998) Neuropharmacological actions of cigarette smoke: brain monoamine oxidase B (MAO B) inhibition. J Addict Dis 17:23–34 CASPubMed Google Scholar
Garpenstrand H, Ekblom J, Forslund K, Rylander G, Oreland L (2000) Platelet monoamine oxidase activity is related to MAOB intron 13 genotype. J Neural Transm 107:523–530 CASPubMed Google Scholar
Garrick NA, Murphy DL (1980) Species differences in the deamination of dopamine and other substrates for monoamine oxidase in brain. Psychopharmacology 72:27–33 CASPubMed Google Scholar
Glover V, Sandler M, Owen F, Riley GJ (1977) Dopamine is a monoamine oxidase B substrate in man. Nature 265:80–81 CASPubMed Google Scholar
Godar SC, Bortolato M, Frau R, Dousti M, Chen K, Shih JC (2011) Maladaptive defensive behaviours in monoamine oxidase A-deficient mice. Int J Neuropsychopharmacol 14:1195–1207 CASPubMed Google Scholar
Godar SC, Bortolato M, Castelli MP, Casti A, Casu A, Chen K, Ennas MG, Tambaro S, Shih JC (2014) The aggression and behavioral abnormalities associated with monoamine oxidase A deficiency are rescued by acute inhibition of serotonin reuptake. J Psychiatr Res 56:1–9 PubMedPubMed Central Google Scholar
Godar SC, Fite PJ, McFarlin KM, Bortolato M (2016) The role of monoamine oxidase A in aggression: current translational developments and future challenges. Prog Neuropsychopharmacol Biol Psychiatr 69:90–100 CAS Google Scholar
Grimsby J, Lan NC, Neve R, Chen K, Shih JC (1990) Tissue distribution of human monoamine oxidase A and B mRNA. J Neurochem 55:1166–1169 CASPubMed Google Scholar
Grimsby J, Chen K, Wang LJ, Lan NC, Shih JC (1991) Human monoamine oxidase A and B genes exhibit identical exon–intron organization. Proc Natl Acad Sci USA 88:3637–3641 CASPubMed Google Scholar
Grimsby J, Toth M, Chen K, Kumazawa T, Klaidman L, Adams JD, Karoum F, Gal J, Shih JC (1997) Increased stress response and beta-phenylethylamine in MAOB-deficient mice. Nat Genet 17:206–210 CASPubMed Google Scholar
Guo L, Zhen X (2015) Sigma-2 receptor ligands: neurobiological effects. Curr Med Chem 22:989–1003 CASPubMed Google Scholar
Huang Y-Y, Cate SP, Battistuzzi C, Oquendo MA, Brent D, Mann JJ (2004) An association between a functional polymorphism in the monoamine oxidase A gene promoter, impulsive traits and early abuse experiences. Neuropsychopharmacology 29:1498–1505 CASPubMed Google Scholar
Hutsler JJ, Casanova MF (2016) Review: cortical construction in autism spectrum disorder: columns, connectivity and the subplate. Neuropathol Appl Neurobiol 42:115–134 PubMed Google Scholar
Jahng JW, Houpt TA, Wessel TC, Chen K, Shih JC, Joh TH (1997) Localization of monoamine oxidase A and B mRNA in the rat brain by in situ hybridization. Synapse 25:30–36 CASPubMed Google Scholar
Jones P, Suggett A (1968) The catalase-hydrogen peroxide system. A theoretical appraisal of the mechanism of catalase action. Biochem J 110:621–629 CASPubMedPubMed Central Google Scholar
Jonsson EG, Norton N, Gustavsson JP, Oreland L, Owen MJ, Sedvall GC (2000) A promoter polymorphism in the monoamine oxidase A gene and its relationships to monoamine metabolite concentrations in CSF of healthy volunteers. J Psychiatr Res 34:239–244 CASPubMed Google Scholar
Jossan SS, Gillberg PG, Gottfries CG, Karlsson I, Oreland L (1991) Monoamine oxidase B in brains from patients with Alzheimer’s disease: a biochemical and autoradiographical study. Neuroscience 45:1–12 CASPubMed Google Scholar
Karmakar A, Maitra S, Chakraborti B, Verma D, Sinha S, Mohanakumar KP, Rajamma U, Mukhopadhyay K (2016) Monoamine oxidase B gene variants associated with attention deficit hyperactivity disorder in the Indo-Caucasoid population from West Bengal. BMC Genet 24:92 Google Scholar
Karmakar A, Goswami R, Saha T, Maitra S, Roychowdhury A, Panda CK, Sinha S, Ray A, Mohanakumar KP, Rajamma U, Mukhopadhyay K (2017) Pilot study indicate role of preferentially transmitted monoamine oxidase gene variants in behavioral problems of male ADHD probands. BMC Med Genet 18:109 PubMedPubMed Central Google Scholar
Kim JJ, Shih JC, Chen K, Chen L, Bao S, Maren S, Anagnostaras SG, Fanselow MS, De Maeyer E, Seif I, Thompson RF (1997) Selective enhancement of emotional, but not motor, learning in monoamine oxidase A-deficient mice. Proc Natl Acad Sci USA 94:5929–5933 CASPubMed Google Scholar
Kim-Cohen J, Caspi A, Taylor A, Williams B, Newcombe R, Craig IW, Moffitt TE (2006) MAOA, maltreatment, and gene–environment interaction predicting children’s mental health: new evidence and a meta-analysis. Mol Psychiatr 11:903–913 CAS Google Scholar
Kitahama K, Denney RM, Maeda T, Jouvet M (1991) Distribution of type B monoamine oxidase immunoreactivity in the cat brain with reference to enzyme histochemistry. Neuroscience 44:185–204 CASPubMed Google Scholar
Knoll J (1993) The pharmacological basis of the beneficial effects of (-)deprenyl (selegiline) in Parkinson’s and Alzheimer’s diseases. J Neural Transm Suppl 40:69–91 CASPubMed Google Scholar
Kuroki T, Tsutsumi T, Hirano M, Matsumoto T, Tatebayashi Y, Nishiyama K, Uchimura H, Shiraishi A, Nakahara T, Nakamura K (1990) Behavioral sensitization to beta-phenylethylamine (PEA): enduring modifications of specific dopaminergic neuron systems in the rat. Psychopharmacology 102:5–10 CASPubMed Google Scholar
Lan NC, Heinzmann C, Gal A, Klisak I, Orth U, Lai E, Grimsby J, Sparkes RS, Mohandas T, Shih JC (1989) Human monoamine oxidase A and B genes map to Xp 11.23 and are deleted in a patient with Norrie disease. Genomics 4:552–559 CASPubMed Google Scholar
Lee BT, Ham BJ (2008) Monoamine oxidase A-uVNTR genotype affects limbic brain activity in response to affective facial stimuli. Neuroreport 19:515–519 CASPubMed Google Scholar
Lenders JW, Eisenhofer G, Abeling NG, Berger W, Murphy DL, Konings CH, Wagemakers LM, Kopin IJ, Karoum F, van Gennip AH, Brunner HG (1996) Specific genetic deficiencies of the A and B isoenzymes of monoamine oxidase are characterized by distinct neurochemical and clinical phenotypes. J Clin Invest 97:1010–1019 CASPubMedPubMed Central Google Scholar
Li J, Wang Y, Hu S, Zhou R, Yu X, Wang B, Guan L, Yang L, Zhang F, Faraone SV (2008) The monoamine oxidase B gene exhibits significant association to ADHD. Am J Med Genet B Neuropsychiatr Genet 147:370–374 PubMed Google Scholar
Liberles SD, Buck LB (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature 442:645–650 CASPubMed Google Scholar
Lindemann L, Ebeling M, Kratochwil NA, Bunzow JR, Grandy DK, Hoener MC (2005) Trace amine associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors. Genomics 85:372–385 CASPubMed Google Scholar
Luque JM, Kwan SW, Abell CW, Da Prada M, Richards JG (1995) Cellular expression of mRNAs encoding monoamine oxidases A and B in the rat central nervous system. J Comp Neurol 363:665–680 CASPubMed Google Scholar
Matson JL, Rivet TT (2008) Characteristics of challenging behaviours in adults with autistic disorder, PDD-NOS, and intellectual disability. J Intellect Dev Disabil 33:323–329 PubMed Google Scholar
Megens AA, Niemegeers CJ, Awouters FH (1992) Behavioral disinhibition and depression in amphetaminized rats: a comparison of risperidone, ocaperidone and haloperidol. J Pharmacol Exp Ther 260:160–167 CASPubMed Google Scholar
Mejia JM, Ervin FR, Palmour RM, Tremblay RE (2001) Aggressive behavior and Brunner syndrome: no evidence for the C936T mutation in a population sample. Am J Med Genet 105:396–397 CASPubMed Google Scholar
Mejia JM, Ervin FR, Baker GB, Palmour RM (2002) Monoamine oxidase inhibition during brain development induces pathological aggressive behavior in mice. Biol Psychiatr 52:811–821 CAS Google Scholar
Meyer-Lindenberg A, Buckholtz JW, Kolachana BR, Hariri AR, Pezawas L, Blasi G, Wabnitz A, Honea R, Verchinski B, Callicott JH, Egan M, Matty V, Weinberger DR (2006) Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc Natl Acad Sci USA 103:6269–6274 CASPubMed Google Scholar
Minshew NJ, Williams DL (2007) The new neurobiology of autism: cortex, connectivity, and neuronal organization. Arch Neurol 64:1464 Google Scholar
Muller CL, Anacker AMJ, Veenstra-VanderWeele J (2016) The serotonin system in autism spectrum disorder: from biomarker to animal models. Neuroscience 321:24–41 CASPubMed Google Scholar
Murphy DL, Sims KB, Karoum F, de la Chapelle A, Norio R, Sankila EM, Breakefield XO (1990) Marked amine and amine metabolite changes in Norrie disease patients with an X-chromosomal deletion affecting monoamine oxidase. J Neurochem 54:242–247 CASPubMed Google Scholar
Murphy DL, Karoum F, Pickar D, Cohen RM, Lipper S, Mellow AM, Tariot PN, Sunderland T (1998) Differential trace amine alterations in individuals receiving acetylenic inhibitors of MAO-A (clorgyline) or MAO-B (selegiline and pargyline). J Neural Transm Suppl 52:39–48 CASPubMed Google Scholar
Nakamura S, Kawamata T, Akiguchi I, Kameyama M, Nakamura N, Kimura H (1990) Expression of monoamine oxidase B activity in astrocytes of senile plaques. Acta Neuropathol 80:419–425 CASPubMed Google Scholar
Nedic G, Pivac N, Hercigonja DK, Jovancevic M, Curkovic KD, Muck-Seler D (2010) Platelet monoamine oxidase activity in children with attention-deficit/hyperactivity disorder. Psychiatr Res 175:252–255 CAS Google Scholar
Nicotra A, Pierucci F, Parvez H, Senatori O (2004) Monoamine oxidase expression during development and aging. Neurotoxicology 25:155–165 CASPubMed Google Scholar
O’Reilly R, Davis BA, Durden DA, Thorpe L, Machnee H, Boulton AA (1991) Plasma phenylethylamine in schizophrenic patients. Biol Psychiatr 30:145–150 Google Scholar
Oreland L, Hallman J (1995) The correlation between platelet MAO activity and personality: short review of findings and a discussion on possible mechanisms. Prog Brain Res 106:77–84 CASPubMed Google Scholar
Oreland L, Nilsson K, Damberg M, Hallman J (2007) Monoamine oxidases: activities, genotypes and the shaping of behaviour. J Neural Transm 114:817–822 CASPubMed Google Scholar
Oxenstierna G, Edman G, Iselius L, Oreland L, Ross SB, Sedvall G (1986) Concentrations of monoamine metabolites in the cerebrospinal fluid of twins and unrelated individuals—a genetic study. J Psychiatr Res 20:19–29 CASPubMed Google Scholar
Palmer EE, Leffler M, Rogers C, Shaw M, Carroll R, Earl J, Cheung NW, Champion B, Hu H, Haas SA, Kalscheuer VM, Gecz J, Field M (2016) New insights into Brunner syndrome and potential for targeted therapy. Clin Genet 89:120–127 CASPubMed Google Scholar
Passamonti L, Fera F, Magariello A, Cerasa A, Gioia MC, Muglia M, Nicoletti G, Gallo O, Provinciali L, Quattrone A (2006) Monoamine oxidase-a genetic variations influence brain activity associated with inhibitory control: new insight into the neural correlates of impulsivity. Biol Psychiatr 59:334–340 CAS Google Scholar
Pedersen NL, Oreland L, Reynolds C, McClearn GE. (1993) Importance of genetic effects for monoamine oxidase activity in thrombocytes in twins reared apart and twins reared together. Psychiatr Res 46: 239–51 CAS Google Scholar
Picazo O, Chuc-Meza E, Anaya-Martinez V, Jimenez I, Aceves J, Garcia-Ramirez M (2009) 6-Hydroxydopamine lesion in thalamic reticular nucleus reduces anxiety behaviour in the rat. Behav Brain Res 197:317–322 CASPubMed Google Scholar
Piton A, Poquet H, Redin C, Masurel A, Lauer J, Muller J, Thevenon J, Herenger Y, Chancenotte S, Bonnet M, Pinoit JM, Huet F, Thauvin-Robinet C, Jaeger AS, Le Gras S, Jost B, Gérard B, Peoc’h K, Launay JM, Faivre L, Mandel JL (2014) 20 ans après: a second mutation in MAOA identified by targeted high-throughput sequencing in a family with altered behavior and cognition. Eur J Hum Genet 22:776–783 CASPubMed Google Scholar
Pizzinat N, Copin N, Vindis C, Parini A, Cambon C (1999) Reactive oxygen species production by monoamine oxidases in intact cells. Naunyn Schmiedebergs Arch Pharmacol 359:428–431 CASPubMed Google Scholar
Popova NK, Maslova LN, Morosova EA, Bulygina VV, Seif I (2006) MAO A knockout attenuates adrenocortical response to various kinds of stress. Psychoneuroendocrinology 31:179–186 CASPubMed Google Scholar
Reist C, Haier RJ, DeMet E, Chicz-DeMet A (1990) Platelet MAO activity in personality disorders and normal controls. Psychiatr Res 33:221–227 CAS Google Scholar
Revel FG, Moreau JL, Gainetdinov RR, Bradaia A, Sotnikova TD, Mory R, Durkin S, Zbinden KG, Norcross R, Meyer CA, Metzler V, Chaboz S, Ozmen L, Trube G, Pouzet B, Bettler B, Caron MG, Wettstein JG, Hoener MC (2011) TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc Natl Acad Sci USA 108:8485–8490 CASPubMed Google Scholar
Revel FG, Moreau JL, Pouzet B, Mory R, Bradaia A, Buchy D, Metzler V, Chabo S, Groebke Zbinden K, Galley G, Norcross RD, Tuerck D, Bruns A, Morairty SR, Kilduff TS, Wallace TL, Risterucci C, Wettstein JG, Hoener MC (2013) A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight. Mol Psychiatr 18:543–556 CAS Google Scholar
Ribasés M, Ramos-Quiroga JA, Hervás A, Bosch R, Bielsa A, Gastaminza X, Artigas J, Rodriguez-Ben S, Estivill X, Casas M, Cormand B, Bayés M (2009) Exploration of 19 serotoninergic candidate genes in adults and children with attention-deficit/hyperactivity disorder identifies association for 5HT2A, DDC and MAOB. Mol Psychiatr 14:71–85 Google Scholar
Rich-Edwards JW, Spiegelman D, Lividoti Hibert EN, Jun HJ, Todd TJ, Kawachi I, Wright RJ (2010) Abuse in childhood and adolescence as a predictor of type 2 diabetes in adult women. Am J Prev Med 39:529–536 PubMedPubMed Central Google Scholar
Rose CF, Verkhratsky A, Parpura V (2013) Astrocyte glutamine synthetase: pivotal in health and disease. Biochem Soc Trans 41:1518–1524 CASPubMed Google Scholar
Ruchkin VV, Koposov RA, af Klinteberg B, Oreland L, Grigorenko EL. (2005) Platelet MAO-B, personality, and psychopathology. J Abnorm Psychol 114: 477–482 PubMed Google Scholar
Rutigliano G, Accorroni A, Zucchi R (2018) The case for TAAR1 as a modulator of central nervous system function. Front Pharmacol 8:987 PubMedPubMed Central Google Scholar
Sabelli HC, Javaid JI (1995) Phenylethylamine modulation of affect: therapeutic and diagnostic implications. J Neuropsychiatr Clin Neurosci 7:6–14 CAS Google Scholar
Sabol SZ, Hu S, Hamer D (1998) A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 103:273–279 CASPubMed Google Scholar
Saito M, Yamagata T, Matsumoto A, Shiba Y, Nagashima M, Taniguchi S, Jimbo E, Momoi MY (2014) MAOA/B deletion syndrome in male siblings with severe developmental delay and sudden loss of muscle tonus. Brain Dev 36:64–69 PubMed Google Scholar
Salichon N, Gaspar P, Upton AL, Picaud S, Hanoun N, Hamon M, De Maeyer E, Murphy DL, Mossner R, Lesch KP, Hen R, Seif I (2001) Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase a and 5-ht transporter knock-out mice. J Neurosci 21:884–896 CASPubMed Google Scholar
Samochowiec J, Lesch KP, Rottmann M, Smolka M, Syagailo YV, Okladnova O, Rommelspacher H, Winterer G, Schmidt LG, Sander T (1999) Association of a regulatory polymorphism in the promoter region of the monoamine oxidase A gene with antisocial alcoholism. Psychiatr Res 86:67–72 CAS Google Scholar
Saura J, Richards JG, Mahy N (1994) Age-related changes on MAO in Bl/C57 mouse tissues: a quantitative radioautographic study. J Neural Transm 41:89–94 CAS Google Scholar
Schilling B, Lerch K (1995) Cloning, sequencing and heterologous expression of the monoamine oxidase gene from Aspergillus niger. Mol Gen Genet 247:430–438 CASPubMed Google Scholar
Schuback DE, Mulligan EL, Sims KB, Tivol EA, Greenberg BD, Chang SF, Yang SL, Mau YC, Shen CY, Ho MS, Yang NH, Butler MG, Fink S, Schwartz CE, Berlin F, Breakefield XO, Murphy DL, Hsu YP (1999) Screen for MAOA mutations in target human groups. Am J Med Genet 88:25–28 CASPubMedPubMed Central Google Scholar
Scott AL, Bortolato M, Chen K, Shih JC (2008) Novel monoamine oxidase A knock out mice with human-like spontaneous mutation. Neuroreport 19:739–743 CASPubMedPubMed Central Google Scholar
Setini A, Pierucci F, Senatori O, Nicotra A (2005) Molecular characterization of monoamine oxidase in zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 140:153–161 PubMed Google Scholar
Shabanov PD, Lebedev AA, Meshcherov ShK, Strel’tsov VF (2005) The effects of neurochemical lesioning of dopaminergic terminals in early ontogenesis on behavior in adult rats. Neurosci Behav Physiol 35:535–544 CASPubMed Google Scholar
Shekim WO, Bylund DB, Alexson J, Glaser RD, Jones SB, Hodges K, Perdue S (1986) Platelet MAO and measures of attention and impulsivity in boys with attention deficit disorder and hyperactivity. Psychiatr Res 18:179–188 CAS Google Scholar
Sims KB, de la Chapelle A, Norio R, Sankila EM, Hsu YP, Rinehart WB, Corey TJ, Ozelius L, Powell JF, Bruns G et al (1989) Monoamine oxidase deficiency in males with an X chromosome deletion. Neuron 2:1069–1076 CASPubMed Google Scholar
Singh C, Bortolato M, Bali N, Godar SC, Scott AL, Chen K, Thompson RF, Shih JC (2013) Cognitive abnormalities and hippocampal alterations in monoamine oxidase A and B knockout mice. Proc Natl Acad Sci USA 110:12816–12821 CASPubMed Google Scholar
Sotnikova TD, Budygin EA, Jones SR, Dykstra LA, Caron MG, Gainetdinov RR (2004) Dopamine transporter-dependent and -independent actions of trace amine beta-phenylethylamine. J Neurochem 91:362–373 CASPubMed Google Scholar
Stäubert C, Böselt I, Bohnekamp J, Römpler H, Enard W, Schöneberg T (2010) Structural and functional evolution of the trace amine-associated receptors TAAR3, TAAR4 and TAAR5 in primates. PLoS One 5:e11133 PubMedPubMed Central Google Scholar
Suárez I, Bodega G, Fernández B (2002) Glutamine synthetase in brain: effect of ammonia. Neurochem Int 41:123–142 PubMed Google Scholar
Szymanski HV, Naylor EW, Karoum F (1987) Plasma phenylethylamine and phenylalanine in chronic schizophrenic patients. Biol Psychiatr 22:194–198 CAS Google Scholar
Tank AW, Weiner H, Thurman JA (1981) Enzymology and subcellular localization of aldehyde oxidation in rat liver. Oxidation of 3,4-dihydroxyphenylacetaldehyde derived from dopamine to 3,4-dihydroxyphenylacetic acid. Biochem Pharmacol 30:3265–3275 CASPubMed Google Scholar
Tank AW, Deitrich RA, Weiner H (1986) Effects of induction of rat liver cytosolic aldehyde dehydrogenase on the oxidation of biogenic aldehydes. Biochem Pharmacol 35:4563–4569 CASPubMed Google Scholar
Thompson AM, Thompson GC (2009) Serotonin-immunoreactive neurons in the postnatal MAO-A KO mouse lateral superior olive project to the inferior colliculus. Neurosci Lett 460:47–51 CASPubMed Google Scholar
van Gaalen MM, Brueggeman RJ, Bronius PF, Schoffelmeer AN, Vanderschuren LJ (2006) Behavioral disinhibition requires dopamine receptor activation. Psychopharmacology 187:73–85 CASPubMed Google Scholar
Vitalis T, Cases O, Callebert J, Launay JM, Price DJ, Seif I, Gaspar P (1998) Effects of monoamine oxidase A inhibition on barrel formation in the mouse somatosensory cortex: determination of a sensitive developmental period. J Comp Neurol 393:169–184 CASPubMed Google Scholar
von Knorring L, Oreland L, Winblad B (1984) Personality traits related to monoamine oxidase activity in platelets. Psychiatr Res 12:11–26 Google Scholar
Whibley A, Urquhart J, Dore J, Willatt L, Parkin G, Gaunt L, Black G, Donnai D, Raymond FL (2010) Deletion of MAOA and MAOB in a male patient causes severe developmental delay, intermittent hypotonia and stereotypical hand movements. Eur J Hum Genet 18:1095–1099 PubMedPubMed Central Google Scholar
Whitaker-Azmitia PM, Zhang X, Clarke C (1994) Effects of gestational exposure to monoamine oxidase inhibitors in rats: preliminary behavioral and neurochemical studies. Neuropsychopharmacology 11:125–132 CASPubMed Google Scholar
Williams LM, Gatt JM, Kuan SA, Dobson-Stone C et al (2009) A polymorphism of the MAOA gene is associated with emotional brain markers and personality traits on an antisocial index. Neuropsychopharmacology 34:1797–1809 CASPubMed Google Scholar
Yu Q, Teixeira CM, Mahadevia D, Huang Y, Balsam D, Mann JJ, Gingrich JA, Ansorge MS (2014) Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice. Mol Psychiatr 19:688–698 CAS Google Scholar