A likelihood ratio test for bimodality in two-component mixtures with application to regional income distribution in the EU (original) (raw)
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime Subscribe now
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
References
- Barro, R., Sala-i-Martin, X.: Convergence across states and regions. Brookings Pap. Econ. Act. 1991(1), 107–182 (1991)
Article Google Scholar - Basu, S., Jammalamadaka, S.R.: Unimodality in circular data: a Bayes test. In: Balakrishnan, N., et al. (eds.) Advances on Methodological and Applied Aspects of Probability and Statistics, pp. 141–153. Taylor and Francis, New York (2002)
Google Scholar - Behboodian, J.: On the modes of a mixture of two normal distributions. Technometrics 12, 131–139 (1970)
Article MATH Google Scholar - Bianchi, M.: Testing for convergence: Evidence from non-parametric multimodality tests. J. Appl. Econom. 12, 393–409 (1997)
Article Google Scholar - Chen, J., Kalbfleisch, J.D.: Modified likelihood ratio test in finite mixture models with a structural parameter. J. Stat. Plan. Inference 129, 93–107 (2005)
Article MATH MathSciNet Google Scholar - Chen, J., Chen, H., Kalbfleisch, J.: A modified likelihood ratio test for homogeneity in finite mixture models. J. R. Stat. Soc. Ser. B 63, 19–29 (2001)
Article MATH MathSciNet Google Scholar - Chernoff, H.: On the distribution of the likelihood ratio. Ann. Math. Stat. 25, 573–578 (1954)
Article MathSciNet Google Scholar - Fisher, N.I., Marron, J.S.: Mode testing via the excess mass estimate. Biometrika 88, 499–517 (2001)
Article MATH MathSciNet Google Scholar - Fisher, N.I., Mammen, E., Marron, J.S.: Testing for multimodality. Comput. Stat. Data Anal. 18, 499–512 (1994)
Article MathSciNet Google Scholar - Goffinet, B., Loisel, P., Laurent, B.: Testing in normal mixture models when the proportions are known. Biometrika 79, 842–846 (1992)
Article MATH MathSciNet Google Scholar - Hall, P., York, M.: On the calibration of Silverman’s test for multimodality. Stat. Sin. 11, 515–536 (2001)
MATH MathSciNet Google Scholar - Hartigan, J.A., Hartigan, P.M.: The dip test of unimodality. Ann. Stat. 13, 70–84 (1985)
Article MATH MathSciNet Google Scholar - Le Gallo, J.: Space-time analysis of GDP disparities among European regions: a Markov chain approach. Int. Reg. Sci. Rev. 27, 138–163 (2004)
Article Google Scholar - Mammen, E., Marron, J.S., Fisher, N.I.: Some asymptotics for multimodality tests based on kernel density estimates. Probab. Theory Relat. Fields 91, 115–132 (1992)
Article MATH MathSciNet Google Scholar - Mardia, K.V., Sutton, T.W.: On the modes of a mixture of two von Mises distributions. Biometrika 62, 699–701 (1975)
Article MATH MathSciNet Google Scholar - Müller, D.W., Sawitzki, G.: Excess mass estimates and tests for multimodality. J. Am. Stat. Assoc. 86, 738–746 (1991)
Article MATH Google Scholar - Pittau, M.G., Zelli, R.: Fitting regional income distributions in the European Union. Oxf. Bull. Econ. Stat. 67, 135–161 (2005)
Article Google Scholar - Pittau, M.G., Zelli, R.: Empirical evidence of income dynamics across EU regions. J. Appl. Econom. 21, 605–628 (2006)
Article MathSciNet Google Scholar - Quah, D.: Regional convergence clusters across Europe. Eur. Econ. Rev. 40, 1353–1375 (1996)
Article Google Scholar - Quah, D.: Empirics for growth and distribution: polarization, stratification, and convergence clubs. J. Econ. Growth 2, 25–59 (1997)
Article Google Scholar - Ray, S., Lindsay, B.G.: The topography of multivariate normal mixtures. Ann. Stat. 33, 2042–2065 (2005)
Article MATH MathSciNet Google Scholar - Robertson, C.A., Fryer, J.G.: Some descriptive properties of normal mixtures. Skand. Aktuarietidskr. 69, 137–146 (1969)
MathSciNet Google Scholar - Sala-i-Martin, X.: The classical approach to convergence analysis. Econ. J. 106, 1019–1036 (1996)
Article Google Scholar - Self, S.G., Liang, K.-Y.: Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J. Am. Stat. Assoc. 82, 605–610 (1987)
Article MATH MathSciNet Google Scholar - Silverman, B.W.: Using kernel density estimates to investigate multimodality. J. R. Stat. Soc. Ser. B 43, 97–99 (1981)
Google Scholar