MicroRNA function in cancer: oncogene or a tumor suppressor? (original) (raw)
Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15–20. ArticleCASPubMed Google Scholar
Rajewsky, N. (2006). microRNA target predictions in animals. Nature Genetics, 38(Suppl), S8–S13. ArticleCASPubMed Google Scholar
Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854. ArticleCASPubMed Google Scholar
Reinhart, B. J., et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772), 901–906. ArticleCASPubMed Google Scholar
Pasquinelli, A. E., et al. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408(6808), 86–89. ArticleCASPubMed Google Scholar
Lagos-Quintana, M., et al. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294(5543), 853–858. ArticleCASPubMed Google Scholar
Lau, N. C., et al. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294(5543), 858–862. ArticleCASPubMed Google Scholar
Lee, R. C., & Ambros, V. (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science, 294(5543), 862–864. ArticleCASPubMed Google Scholar
ALTMAN, L.K., 5 Pioneering Scientists Win Lasker Medical Prizes in New York Times. 2008
Bagga, S., et al. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell, 122(4), 553–563. ArticleCASPubMed Google Scholar
Pillai, R. S. (2005). MicroRNA function: multiple mechanisms for a tiny RNA? RNA, 11(12), 1753–1761. ArticleCASPubMed Google Scholar
Bernstein, E., et al. (2003). Dicer is essential for mouse development. Nature Genetics, 35(3), 215–217. ArticleCASPubMed Google Scholar
Harris, K. S., et al. (2006). Dicer function is essential for lung epithelium morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2208–2213. ArticleCASPubMed Google Scholar
Harfe, B. D., et al. (2005). The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proceedings of the National Academy of Sciences of the United States of America, 102(31), 10898–10903. ArticleCASPubMed Google Scholar
O'Rourke, J. R., et al. (2007). Essential role for Dicer during skeletal muscle development. Developmental Biology, 311(2), 359–368. ArticlePubMed Google Scholar
Muljo, S. A., et al. (2005). Aberrant T cell differentiation in the absence of Dicer. Journal of Experimental Medicine, 202(2), 261–269. ArticleCASPubMed Google Scholar
Yi, R., et al. (2008). A skin microRNA promotes differentiation by repressing ‘stemness’. Nature, 452(7184), 225–229. ArticleCASPubMed Google Scholar
Ashraf, S. I., & Kunes, S. (2006). A trace of silence: memory and microRNA at the synapse. Current Opinion in Neurobiology, 16(5), 535–539. ArticleCASPubMed Google Scholar
Poy, M. N., et al. (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 432(7014), 226–230. ArticleCASPubMed Google Scholar
Esau, C., et al. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabolic, 3(2), 87–98. ArticleCAS Google Scholar
Esau, C. C., & Monia, B. P. (2007). Therapeutic potential for microRNAs. Advanced drug delivery reviews, 59(2–3), 101–114. ArticleCASPubMed Google Scholar
Care, A., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13(5), 613–618. ArticleCASPubMed Google Scholar
Xiao, C., & Rajewsky, K. (2009). MicroRNA control in the immune system: basic principles. Cell, 136(1), 26–36. ArticleCASPubMed Google Scholar
Cameron, J. E., et al. (2008). Epstein-Barr virus latent membrane protein 1 induces cellular MicroRNA miR-146a, a modulator of lymphocyte signaling pathways. Journal of Virology, 82(4), 1946–1958. ArticleCASPubMed Google Scholar
Gottwein, E., et al. (2007). A viral microRNA functions as an orthologue of cellular miR-155. Nature, 450(7172), 1096–1099. ArticleCASPubMed Google Scholar
Moschos, S. A., et al. (2007). Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics, 8, 240. ArticlePubMed Google Scholar
Sonkoly, E., Stahle, M., & Pivarcsi, A. (2008). MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. Seminars in Cancer Biology, 18(2), 131–140. ArticleCASPubMed Google Scholar
Calin, G. A., et al. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15524–15529. ArticleCASPubMed Google Scholar
Jiang, J., et al. (2005). Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Research, 33(17), 5394–5403. ArticleCASPubMed Google Scholar
Davison, T. S., Johnson, C. D., & Andruss, B. F. (2006). Analyzing micro-RNA expression using microarrays. Methods in Enzymology, 411, 14–34. ArticleCASPubMed Google Scholar
Liang, Z., et al. (2007). Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA. Biochemical and Biophysical Research Communications, 363(3), 542–546. ArticleCASPubMed Google Scholar
Miska, E. A. (2005). How microRNAs control cell division, differentiation and death. Current Opinion in Genetics and Development, 15(5), 563–568. ArticleCASPubMed Google Scholar
Lee, Y. S., et al. (2005). Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. Journal of Biological Chemistry, 280(17), 16635–16641. ArticleCASPubMed Google Scholar
Roldo, C., et al. (2006). MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. Journal of Clinical Oncology, 24(29), 4677–4684. ArticleCASPubMed Google Scholar
Dillhoff, M., et al. (2008). MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. Journal of Gastrointestinal Surgery, 12(12), 2171–2176. ArticlePubMed Google Scholar
Gironella, M., et al. (2007). Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16170–16175. ArticleCASPubMed Google Scholar
Burk, U., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9(6), 582–589. ArticleCASPubMed Google Scholar
Nakajima, G., et al. (2006). Non-coding microRNAs hsa-let-7g and hsa-miR-181b are associated with Chemoresponse to S-1 in Colon Cancer. Cancer Genomics Proteomics, 3(5), 317–324. CASPubMed Google Scholar
Lanza, G., et al. (2007). mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Molecular Cancer, 6, 54. ArticlePubMed Google Scholar
Asangani, I. A., et al. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27(15), 2128–2136. ArticleCASPubMed Google Scholar
Hayashita, Y., et al. (2005). A polycistronic microRNA cluster, miR-17–92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Research, 65(21), 9628–9632. ArticleCASPubMed Google Scholar
Matsubara, H., et al. (2007). Apoptosis induction by antisense oligonucleotides against miR-17–5p and miR-20a in lung cancers overexpressing miR-17–92. Oncogene, 26(41), 6099–6105. ArticleCASPubMed Google Scholar
Chang, T. C., et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular Cell, 26(5), 745–752. ArticleCASPubMed Google Scholar
Lodygin, D., et al. (2008). Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle, 7(16), 2591–2600. CASPubMed Google Scholar
Michael, M. Z., et al. (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Molecular Cancer Research, 1(12), 882–891. CASPubMed Google Scholar
Akao, Y., Nakagawa, Y., & Naoe, T. (2006). MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncology Reports, 16(4), 845–850. CASPubMed Google Scholar
Shi, B., et al. (2007). Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. Journal of Biological Chemistry, 282(45), 32582–32590. ArticleCASPubMed Google Scholar
Akao, Y., Nakagawa, Y., & Naoe, T. (2006). Let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biological and Pharmaceutical Bulletin, 29(5), 903–906. ArticleCASPubMed Google Scholar
Takamizawa, J., et al. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Research, 64(11), 3753–3756. ArticleCASPubMed Google Scholar
Johnson, S. M., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635–647. ArticleCASPubMed Google Scholar
Johnson, C. D., et al. (2007). The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Research, 67(16), 7713–7722. ArticleCASPubMed Google Scholar
Lee, Y. S., & Dutta, A. (2007). The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes and Development, 21(9), 1025–1030. ArticleCASPubMed Google Scholar
Bommer, G. T., et al. (2007). p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Current Biology, 17(15), 1298–1307. ArticleCASPubMed Google Scholar
Calin, G. A., & Croce, C. M. (2006). MicroRNA-cancer connection: the beginning of a new tale. Cancer Research, 66(15), 7390–7394. ArticleCASPubMed Google Scholar
Cimmino, A., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13944–13949. ArticleCASPubMed Google Scholar
Lin, T., et al. (2009). MicroRNA-143 as a tumor suppressor for bladder cancer. The Journal of Urology, 181, 1372–1380. ArticleCASPubMed Google Scholar
Varambally, S., et al. (2008). Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science, 322(5908), 1695–1699. ArticleCASPubMed Google Scholar
Liu, C. G., et al. (2004). An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proceedings of the National Academy of Sciences of the United States of America, 101(26), 9740–9744. ArticleCASPubMed Google Scholar
Walsh, T., & King, M. C. (2007). Ten genes for inherited breast cancer. Cancer Cell, 11(2), 103–105. ArticleCASPubMed Google Scholar
Xin, F., et al. (2008). Computational analysis of MicroRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance. Bioinformatics, 25, 430–434. ArticlePubMed Google Scholar
Scott, G. K., et al. (2006). Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Research, 66(3), 1277–1281. ArticleCASPubMed Google Scholar
Abdelrahim, M., et al. (2002). Small inhibitory RNA duplexes for Sp1 mRNA block basal and estrogen-induced gene expression and cell cycle progression in MCF-7 breast cancer cells. Journal of Biological Chemistry, 277(32), 28815–28822. ArticleCASPubMed Google Scholar
Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682–688. ArticleCASPubMed Google Scholar
Zhu, S., et al. (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). Journal of Biological Chemistry, 282(19), 14328–14336. ArticleCASPubMed Google Scholar
Boyd, J., et al. (1995). Regulation of microfilament organization and anchorage-independent growth by tropomyosin 1. Proceedings of the National Academy of Sciences of the United States of America, 92(25), 11534–11538. ArticleCASPubMed Google Scholar
Frankel, L. B., et al. (2008). Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. Journal of Biological Chemistry, 283(2), 1026–1033. ArticleCASPubMed Google Scholar
Hossain, A., Kuo, M. T., & Saunders, G. F. (2006). Mir-17–5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Molecular and Cellular Biology, 26(21), 8191–8201. ArticleCASPubMed Google Scholar
Murray, G. I., et al. (1997). Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Research, 57(14), 3026–3031. CASPubMed Google Scholar
Tsuchiya, Y., et al. (2006). MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Research, 66(18), 9090–9098. ArticleCASPubMed Google Scholar
Mattie, M. D., et al. (2006). Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Molecular Cancer, 5, 24. ArticlePubMed Google Scholar
Scott, G. K., et al. (2007). Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. Journal of Biological Chemistry, 282(2), 1479–1486. ArticleCASPubMed Google Scholar
Eger, A., et al. (2005). DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene, 24(14), 2375–2385. ArticleCASPubMed Google Scholar
Hurteau, G. J., et al. (2007). Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Research, 67(17), 7972–7976. ArticleCASPubMed Google Scholar
Adams, B. D., Furneaux, H., & White, B. A. (2007). The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Molecular Endocrinology, 21(5), 1132–1147. ArticleCASPubMed Google Scholar
Kondo, N., et al. (2008). miR-206 Expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Research, 68(13), 5004–5008. ArticleCASPubMed Google Scholar
Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572. ArticleCASPubMed Google Scholar
Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Review Cancer, 3(6), 453–458. ArticleCAS Google Scholar
Huang, Q., et al. (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature Cell Biology, 10(2), 202–210. ArticleCASPubMed Google Scholar
Tavazoie, S. F., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152. ArticleCASPubMed Google Scholar
Yu, F., et al. (2007). Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6), 1109–1123. ArticleCASPubMed Google Scholar
Gebeshuber, C. A., Zatloukal, K., & Martinez, J. (2009). miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Reports, 10(4), 400–405. ArticleCASPubMed Google Scholar