A generating function for all semi-magic squares and the volume of the Birkhoff polytope (original) (raw)

References

  1. Baldoni, V., De Loera, J.A, Vergne, M.: Counting integer flows in networks. Foundations of Computational Mathematics 4(3), 277–314 (2004)
    MATH MathSciNet Google Scholar
  2. Barvinok, A.I.: Computing the volume, counting integral points, and exponential sums. Discrete Comput. Geom. 10, 123–141 (1993)
    Article MATH MathSciNet Google Scholar
  3. Barvinok, A.I.: A course in convexity. Graduate studies in Mathematics, vol. 54. American Math. Soc., Providence (2002)
    MATH Google Scholar
  4. Barvinok, A.I., Pommersheim, J.: An algorithmic theory of lattice points in polyhedra. In: New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996–1997). Math. Sci. Res. Inst. Publ., vol. 38, pp. 91–147. Cambridge Univ. Press, Cambridge (1999)
    Google Scholar
  5. Beck, M., Pixton, D.: The Ehrhart polynomial of the Birkhoff polytope. Discrete Comput. Geom. 30, 623–637 (2003)
    MATH MathSciNet Google Scholar
  6. Beck, M., Hasse, C., Sottile, F.: Theorems of Brion, Lawrence, and Varchenko on rational generating functions for cones, manuscript (2007), available at math ArXiv:math.CO/0506466
  7. Beck, M., Robins, S.: Computing the continuous discretely: integer-point enumeration in polyhedra. Springer undergraduate texts in Mathematics (2007)
  8. Brion, M.: Points entiers dans les polyèdres convexes. Annales scientifiques de l’École Normale Supérieure Ser. 4(21), 653–663 (1988)
    MathSciNet Google Scholar
  9. Canfield, E.R., McKay, B.: Asymptotic enumeration of integer matrices with constant row and column sums, available at math ArXiv:CO/0703600
  10. Canfield, E.R., McKay, B.: The asymptotic volume of the Birkhoff polytope, available at math ArXiv:CO/0705.2422
  11. Chan, C.S., Robbins, D.P.: On the volume of the polytope of doubly-stochastic matrices. Experiment. Math. 8(3), 291–300 (1999)
    MATH MathSciNet Google Scholar
  12. Chan, D.P., Robbins, C.S, Yuen, D.S: On the volume of a certain polytope. Experiment. Math. 9(1), 91–99 (2000)
    MATH MathSciNet Google Scholar
  13. De Loera, J.A., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective Lattice Point Counting in Rational Convex Polytopes. Journal of Symbolic Computation 38, 1273–1302 (2004)
    Article MathSciNet Google Scholar
  14. De Loera, J.A, Rambau, J., Santos, F.: Triangulations: Structures and Algorithms. Manuscript (2008)
  15. Diaconis, P., Gangolli, A.: Rectangular Arrays with Fixed Margins. IMA Series on Volumes in Mathematics and its Applications, vol. 72, pp. 15–41. Springer, Berlin (1995)
    Google Scholar
  16. Ehrhart, E.: Polynômes Arithmétiques et Méthode des Polyédres en Combinatoire. Birkhauser, Basel (1977)
    MATH Google Scholar
  17. Filliman, P.: The volume of duals and sections of polytopes. Mathematika 39, 67–80 (1992)
    Article MATH MathSciNet Google Scholar
  18. Fulton, W.: Introduction to Toric Varieties. Princeton University Press, Princeton (1993). 180 pages
    MATH Google Scholar
  19. Kuperberg, G.: A generalization of Filliman duality. Proceedings of the AMS 131(12), 3893–3899 (2003)
    Article MATH MathSciNet Google Scholar
  20. Lawrence, J.: Polytope volume computation. Math. Comput. 57, 259–271 (1991)
    Article MATH MathSciNet Google Scholar
  21. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
    MATH Google Scholar
  22. Stanley, R.P.: Enumerative Combinatorics, 2nd ed., vol. I. Cambridge University Press, Cambridge (1997)
    MATH Google Scholar
  23. Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series, vol. 8. AMS, Providence (1995)
    Google Scholar
  24. Yemelichev, V.A., Kovalev, M.M., Kratsov, M.K.: Polytopes, Graphs and Optimisation. Cambridge Univ. Press, Cambridge (1984)
    MATH Google Scholar
  25. Zeilberger, D.: Proof of a conjecture of Chan, Robbins, and Yuen. Electronic Transactions on Numerical Analysis 9, 147–148 (1999)
    MATH MathSciNet Google Scholar
  26. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995). 370 pages
    MATH Google Scholar

Download references