Dissociation Constants of Protonated Amines in Water at Temperatures from 293.15 K to 343.15 K (original) (raw)

References

  1. Lecomte, F., Broutin, P., Lebas, E.: CO2 Capture, Technologies to Reduce Greenhouse Gas Emissions. TECHNIP, Paris (2010)
    Google Scholar
  2. Arcis, H., Rodier, L., Ballerat-Busserolles, K., Coxam, J.-Y.: Enthalpy of solution of CO2 in aqueous solutions of methyldiethanolamine at _T_=322.5 K and pressure up to 5 MPa. J. Chem. Thermodyn. 40, 1022–1029 (2008)
    Article CAS Google Scholar
  3. Arcis, H., Rodier, L., Ballerat-Busserolles, K., Coxam, J.-Y.: Enthalpy of solution of CO2 in aqueous solutions of methyldiethanolamine at _T_=372.9 K and pressures up to 5 MPa. J. Chem. Thermodyn. 41, 836–841 (2009)
    Article CAS Google Scholar
  4. Arcis, H., Rodier, L., Ballerat-Busserolles, K., Coxam, J.-Y.: Modeling of (vapor + liquid) equilibrium and enthalpy of solution of carbon dioxide (CO2) in aqueous methyldiethanolamine (MDEA) solutions. J. Chem. Thermodyn. 41, 783–789 (2009)
    Article CAS Google Scholar
  5. Kim, I., Hoff, K.A., Hessen, E.T., Haug-Warberg, T., Svendsen, H.F.: Enthalpy of absorption of CO2 with alkanolamine solutions predicted from reaction equilibrium constants. Chem. Eng. Sci. 64, 2027–2038 (2009)
    Article CAS Google Scholar
  6. Oscarson, J.L., Wu, G., Faux, P.W., Izatt, R.M., Christensen, J.J.: Thermodynamics of protonation of alkanolamines in aqueous solution to 325 °C. Thermochim. Acta 154, 119–127 (1989)
    Article CAS Google Scholar
  7. Schwabe, K., Graichen, W., Spiethoff, D.: Physicochemical investigations on alkanolamines. Z. Phys. Chem. 20, 68–82 (1959)
    Article CAS Google Scholar
  8. Littel, R.J., Bos, M., Knoop, G.J.: Dissociation-constants of some alkanolamines at 293-K, 303-K, 318-K, and 333-K. J. Chem. Eng. Data 35, 276–277 (1990)
    Article CAS Google Scholar
  9. Perez-Salado Kamps, A., Maurer, G.: Dissociation constant of N-methyldiethanolamine in aqueous solution at temperatures from 278 K to 368 K. J. Chem. Eng. Data 41, 1505–1513 (1996)
    Article CAS Google Scholar
  10. Hamborg, E.S., Niederer, J.P.M., Versteeg, G.F.: Dissociation constants and thermodynamic properties of amino acids used in CO2 absorption from (293 to 353) K. J. Chem. Eng. Data 52, 2491–2502 (2007)
    Article CAS Google Scholar
  11. Hamborg, E.S., Versteeg, G.F.: Dissociation constants and thermodynamic properties of amines and alkanolamines from (293 to 353) K. J. Chem. Eng. Data 54, 1318–1328 (2009)
    Article CAS Google Scholar
  12. Coulier, Y., Ballerat-Busserolles, K., Rodier, L., Coxam, J.Y.: Temperatures of liquid–liquid separation and excess molar volumes of {N-methylpiperidine–water} and {2-methylpiperidine–water} systems. Fluid Phase Equilib. 296, 206–212 (2010)
    Article CAS Google Scholar
  13. Manov, G.G., Bates, R.G., Hamer, W.J., Acree, S.F.: Values of the constants in the Debye–Hückel equation for activity coefficients 1. J. Am. Chem. Soc. 65, 1765–1767 (1943)
    Article CAS Google Scholar
  14. Kielland, J.: Individual activity coefficients of ions in aqueous solutions. J. Am. Chem. Soc. 59, 1675–1678 (1937)
    Article CAS Google Scholar
  15. Edwards, T.J., Maurer, G., Newman, J., Prausnitz, J.M.: Vapor–liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes. AIChE J. 24, 966–976 (1978)
    Article CAS Google Scholar
  16. Hill, P.G.: A unified fundamental equation for the thermodynamic properties of H2O. J. Phys. Chem. Ref. Data 19, 1233–1274 (1990)
    Article CAS Google Scholar
  17. Bates, R.G., Schwarzenbach, G.: Triathanolamin als puffersubstanz. Helv. Chim. Acta 37, 1437–1439 (1954)
    Article CAS Google Scholar
  18. Bates, R.G., Allen, G.F.: Acidic dissociation constants and related thermodynamic quantities for triethanolammonium ion in water from 0 to 50 °C. J. Res. Natl. Bur. Stand., A Phys. Chem. 64, 343 (1960)
    Google Scholar
  19. Bates, R.G., Pinching, G.D.: Acidic dissociation constant and related thermodynamic quantities for monoethanolammonium ion in water from 0 °C to 50 °C. J. Res. Natl. Bur. Stand. 46, 349–352 (1951)
    CAS Google Scholar
  20. Datta, S.P., Grzybowski, A.K.: Acid dissociation constants of ammonium group in 2-aminoethanol, 2-aminoethyl phosphate, and 2-aminoethyl sulphate. J. Chem. Soc. 3068–3075 (1962)
  21. Ford, T.D., Call, T.G., Origlia, M.L., Stark, M.A., Woolley, E.M.: Apparent molar volumes and apparent molar heat capacities of aqueous 2-amino-2-hydroxymethyl-propan-1,3-diol (Tris of THAM) and THAM plus equimolal HCl. J. Chem. Thermodyn. 32, 499–516 (2000)
    Article CAS Google Scholar
  22. Blauwhoff, P.M., Bos, M.: Dissociation-constants of diethanolamine and diisopropanolamine in an aqueous 1.00-M KCl solution. J. Chem. Eng. Data 26, 7–8 (1981)
    Article CAS Google Scholar
  23. Chremos, G.N., Zimmerman, H.K.: Protolysis equilibria of N-substituted diethanolamines. Z. Phys. Chem. (Frankfurt/Main) 35, 129–132 (1962)
    Article CAS Google Scholar
  24. Bower, V.E., Robinson, R.A., Bates, R.G.: Acidic dissociation constant and related thermodynamic quantities for diethanolammonium ion in water from 0 to 50 °C. J. Res. Natl. Bur. Stand., A Phys. Chem. 66, 71–75 (1962)
    Google Scholar
  25. Bjerrum, J., Schwarzenbach, G., Sillen, L.G.: Organic ligands. In: Stability Constants, Part I, Special Publication No. 6. The Chemical Society, London (1957)
    Google Scholar

Download references