Dissociation Constants of Protonated Amines in Water at Temperatures from 293.15 K to 343.15 K (original) (raw)
References
Lecomte, F., Broutin, P., Lebas, E.: CO2 Capture, Technologies to Reduce Greenhouse Gas Emissions. TECHNIP, Paris (2010) Google Scholar
Arcis, H., Rodier, L., Ballerat-Busserolles, K., Coxam, J.-Y.: Enthalpy of solution of CO2 in aqueous solutions of methyldiethanolamine at _T_=322.5 K and pressure up to 5 MPa. J. Chem. Thermodyn. 40, 1022–1029 (2008) ArticleCAS Google Scholar
Arcis, H., Rodier, L., Ballerat-Busserolles, K., Coxam, J.-Y.: Enthalpy of solution of CO2 in aqueous solutions of methyldiethanolamine at _T_=372.9 K and pressures up to 5 MPa. J. Chem. Thermodyn. 41, 836–841 (2009) ArticleCAS Google Scholar
Arcis, H., Rodier, L., Ballerat-Busserolles, K., Coxam, J.-Y.: Modeling of (vapor + liquid) equilibrium and enthalpy of solution of carbon dioxide (CO2) in aqueous methyldiethanolamine (MDEA) solutions. J. Chem. Thermodyn. 41, 783–789 (2009) ArticleCAS Google Scholar
Kim, I., Hoff, K.A., Hessen, E.T., Haug-Warberg, T., Svendsen, H.F.: Enthalpy of absorption of CO2 with alkanolamine solutions predicted from reaction equilibrium constants. Chem. Eng. Sci. 64, 2027–2038 (2009) ArticleCAS Google Scholar
Oscarson, J.L., Wu, G., Faux, P.W., Izatt, R.M., Christensen, J.J.: Thermodynamics of protonation of alkanolamines in aqueous solution to 325 °C. Thermochim. Acta 154, 119–127 (1989) ArticleCAS Google Scholar
Schwabe, K., Graichen, W., Spiethoff, D.: Physicochemical investigations on alkanolamines. Z. Phys. Chem. 20, 68–82 (1959) ArticleCAS Google Scholar
Littel, R.J., Bos, M., Knoop, G.J.: Dissociation-constants of some alkanolamines at 293-K, 303-K, 318-K, and 333-K. J. Chem. Eng. Data 35, 276–277 (1990) ArticleCAS Google Scholar
Perez-Salado Kamps, A., Maurer, G.: Dissociation constant of N-methyldiethanolamine in aqueous solution at temperatures from 278 K to 368 K. J. Chem. Eng. Data 41, 1505–1513 (1996) ArticleCAS Google Scholar
Hamborg, E.S., Niederer, J.P.M., Versteeg, G.F.: Dissociation constants and thermodynamic properties of amino acids used in CO2 absorption from (293 to 353) K. J. Chem. Eng. Data 52, 2491–2502 (2007) ArticleCAS Google Scholar
Hamborg, E.S., Versteeg, G.F.: Dissociation constants and thermodynamic properties of amines and alkanolamines from (293 to 353) K. J. Chem. Eng. Data 54, 1318–1328 (2009) ArticleCAS Google Scholar
Coulier, Y., Ballerat-Busserolles, K., Rodier, L., Coxam, J.Y.: Temperatures of liquid–liquid separation and excess molar volumes of {N-methylpiperidine–water} and {2-methylpiperidine–water} systems. Fluid Phase Equilib. 296, 206–212 (2010) ArticleCAS Google Scholar
Manov, G.G., Bates, R.G., Hamer, W.J., Acree, S.F.: Values of the constants in the Debye–Hückel equation for activity coefficients 1. J. Am. Chem. Soc. 65, 1765–1767 (1943) ArticleCAS Google Scholar
Kielland, J.: Individual activity coefficients of ions in aqueous solutions. J. Am. Chem. Soc. 59, 1675–1678 (1937) ArticleCAS Google Scholar
Edwards, T.J., Maurer, G., Newman, J., Prausnitz, J.M.: Vapor–liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes. AIChE J. 24, 966–976 (1978) ArticleCAS Google Scholar
Hill, P.G.: A unified fundamental equation for the thermodynamic properties of H2O. J. Phys. Chem. Ref. Data 19, 1233–1274 (1990) ArticleCAS Google Scholar
Bates, R.G., Schwarzenbach, G.: Triathanolamin als puffersubstanz. Helv. Chim. Acta 37, 1437–1439 (1954) ArticleCAS Google Scholar
Bates, R.G., Allen, G.F.: Acidic dissociation constants and related thermodynamic quantities for triethanolammonium ion in water from 0 to 50 °C. J. Res. Natl. Bur. Stand., A Phys. Chem. 64, 343 (1960) Google Scholar
Bates, R.G., Pinching, G.D.: Acidic dissociation constant and related thermodynamic quantities for monoethanolammonium ion in water from 0 °C to 50 °C. J. Res. Natl. Bur. Stand. 46, 349–352 (1951) CAS Google Scholar
Datta, S.P., Grzybowski, A.K.: Acid dissociation constants of ammonium group in 2-aminoethanol, 2-aminoethyl phosphate, and 2-aminoethyl sulphate. J. Chem. Soc. 3068–3075 (1962)
Ford, T.D., Call, T.G., Origlia, M.L., Stark, M.A., Woolley, E.M.: Apparent molar volumes and apparent molar heat capacities of aqueous 2-amino-2-hydroxymethyl-propan-1,3-diol (Tris of THAM) and THAM plus equimolal HCl. J. Chem. Thermodyn. 32, 499–516 (2000) ArticleCAS Google Scholar
Blauwhoff, P.M., Bos, M.: Dissociation-constants of diethanolamine and diisopropanolamine in an aqueous 1.00-M KCl solution. J. Chem. Eng. Data 26, 7–8 (1981) ArticleCAS Google Scholar
Chremos, G.N., Zimmerman, H.K.: Protolysis equilibria of N-substituted diethanolamines. Z. Phys. Chem. (Frankfurt/Main) 35, 129–132 (1962) ArticleCAS Google Scholar
Bower, V.E., Robinson, R.A., Bates, R.G.: Acidic dissociation constant and related thermodynamic quantities for diethanolammonium ion in water from 0 to 50 °C. J. Res. Natl. Bur. Stand., A Phys. Chem. 66, 71–75 (1962) Google Scholar
Bjerrum, J., Schwarzenbach, G., Sillen, L.G.: Organic ligands. In: Stability Constants, Part I, Special Publication No. 6. The Chemical Society, London (1957) Google Scholar