Size measurement uncertainties of near-monodisperse, near-spherical nanoparticles using transmission electron microscopy and particle-tracking analysis (original) (raw)
References
Anderson W, Kozak D, Coleman VA, Jämting ÅK, Trau M (2013) A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions. J Colloid Interface Sci 405(0):322–330. doi:10.1016/j.jcis.2013.02.030
ASTM E766-98(2008)e1 (2008) Standard practice for calibrating the magnification of a scanning electron microscope. Am Soc Test Mater USA. doi:10.1520/E0766-98R08E01
ASTM E2834-12 (2012) Standard guide for measurement of particle size distribution of nanomaterials in suspension by nanoparticle tracking analysis (NTA). Am Soc Test Mater USA. doi:10.1520/E2834-12
Baalousha M, Prasad A, Lead JR (2014) Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy. Environ Sci Process Impacts. doi:10.1039/c3em00712j
Bell NC, Minelli C, Tompkins J, Stevens MM, Shard AG (2012) Emerging techniques for submicrometer particle sizing applied to Stober silica. Langmuir 28(29):10860–10872. doi:10.1021/la301351k
Braun A, Couteau O, Franks K, Kestens V, Roebben G, Lamberty A, Linsinger TPJ (2011a) Validation of dynamic light scattering and centrifugal liquid sedimentation methods for nanoparticle characterisation. Adv Powder Technol 22(6):766–770. doi:10.1016/j.apt.2010.11.001
Braun A, Franks K, Kestens V, Roebben G, Lamberty A, Linsinger TPJ (2011b) Certified Reference material ERM®- FD100: certification of equivalent spherical diameters of silica nanoparticles in water. Report EUR 25018 EN. European Union, Luxembourg. doi:10.2787/33725
Brown SC, Boyko V, Meyers G, Voetz M, Wohlleben W (2013) Toward advancing nano-object count metrology: a best practice framework. Environ Health Perspect 121(10–12):1282–1291. doi:10.1289/ehp.1306957
Carr B, Wright M (2013) Nanoparticle Tracking analysis: a review of applications and usage 2010–2012. NanoSight Ltd, Wiltshire Google Scholar
De Temmerman P-J, Van Doren E, Verleysen E, Van der Stede Y, Francisco M, Mast J (2012) Quantitative characterization of agglomerates and aggregates of pyrogenic and precipitated amorphous silica nanomaterials by transmission electron microscopy. J Nanobiotechnol 10(24). doi:10.1186/1477-3155-10-24
De Temmerman P-J, Lammertyn J, De Ketelaere B, Kestens V, Roebben G, Verleysen E, Mast J (2013) Measurement uncertainties of size, shape, and surface measurements using transmission electron microscopy of near-monodisperse, near-spherical nanoparticles. J Nanopart Res 16(1):1–22. doi:10.1007/s11051-013-2177-1
De Temmerman P-J, Verleysen E, Lammertyn J, Mast J (2014) Semi-automatic size measurements of primary particles in aggregated nanomaterials by transmission electron microscopy. Powder Technol 261(July):191–200. doi:10.1016/j.powtec.2014.04.040
EC (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial. Off J Eur Union (275):38–40
Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res 27(5):796–810. doi:10.1007/s11095-010-0073-2
Franks K, Braun A, Charoud-Got J, Couteau O, Kestens V, Lamberty A, Linsinger TPJ, Roebben G (2012) Certified reference material ERM®-FD304: certification of the equivalent spherical diameters of silica nanoparticles in aqueous solution. EUR 24620 EN. European Union, Luxembourg. doi:10.2787/53476
Gardiner C, Ferreira YJ, Dragovic RA, Redman CW, Sargent IL (2013) Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles 2. doi:10.3402/jev.v2i0.19671
Hole P, Sillence K, Hannell C, Maguire C, Roesslein M, Suarez G, Capracotta S, Magdolenova Z, Horev-Azaria L, Dybowska A, Cooke L, Haase A, Contal S, Manø S, Vennemann A, Sauvain J–J, Staunton K, Anguissola S, Luch A, Dusinska M, Korenstein R, Gutleb A, Wiemann M, Prina-Mello A, Riediker M, Wick P (2013) Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J Nanopart Res 15(12):1–12. doi:10.1007/s11051-013-2101-8
ISO 13322-1 (2004) Particle size analysis—image analysis methods. Part 1: Static image analysis methods. International Organization for Standardization, Geneva
ISO 9276-1 (1998) Representation of results of particle size analysis. Part 1: Graphical representation. International Organization for Standardization, Geneva
ISO 9276-3 (2008) Representation of results of particle size analysis. Part 3: Adjustment of an experimental curve to a reference model. International Organization for Standardization, Geneva
ISO TS 27687 (2008) Nanotechnologies—terminology and definitions for nano-objects—nanoparticle, nanofibre and nanoplateInternational Organization for Standardization Geneva
ISO/IEC GUIDE 98-3 (2008) Uncertainty of measurement. Part 3: Guide to the expression of uncertainty in measurement (GUM:1995). International Organization for Standardization, Geneva
Kaiser DL, Watters RL (2007a) Reference material 8011: gold nanoparticles, nominal 10 nm diameter. Report of Investigation. National Institute of Standards & Technology, Gaitersburg Google Scholar
Kaiser DL, Watters RL (2007b) Reference material 8012: gold nanoparticles, nominal 30 nm diameter. Report of investigation. National Institute of Standards & Technology, Gaitersburg Google Scholar
Kaiser DL, Watters RL (2007c) Reference material 8013: gold nanoparticles, nominal 60 nm diameter. Report of investigation. National Institute of Standards & Technology, Gaitersburg Google Scholar
Klein C, Comero S, Stahlmecke B, Romazanov J, Kuhlbusch T, Van Doren E, De Temmerman P-J, Mast J, Wick P, Krug H, Locoro G, Hund-Rinke K, Kördel W, Friedrichs S, Maier G, Werner J, Linsinger TPJ, Gawlik BM (2011) NM-series of representative manufactured nanomaterials: NM-300 silver characterisation, stability, homogeneity. EUR 24693 EN—2011. doi:10.2788/23079
Linsinger TPJ, Roebben G, Gilliland D, Calzolai L, Rossi F, Gibson N, Klein C (2012) Requirements on measurements for the implementation of the European Commission definition of the term ‘nanomaterial’. EUR 25404 EN. doi:10.2787/63490
Mast J, Demeestere L (2009) Electron tomography of negatively stained complex viruses: application in their diagnosis. Diagn Pathol 4:5. doi:10.1186/1746-1596-4-5
Masuda H, Gotoh K (1999) Study on the sample size required for the estimation of mean particle diameter. Adv Powder Technol 10(2):159–173. doi:10.1163/156855299x00055
McCaffrey JP, Baribeau JM (1995) A transmission electron microscope (TEM) calibration standard sample for all magnification, camera constant, and image/diffraction pattern rotation calibrations. Microsc Res Tech 32(5):449-454. doi:10.1002/jemt.1070320507
Motzkus C, Macé T, Gaie-Levrel F, Ducourtieux S, Delvallee A, Dirscherl K, Hodoroaba VD, Popov I, Popov O, Kuselman I, Takahata K, Ehara K, Ausset P, Maillé M, Michielsen N, Bondiguel S, Gensdarmes F, Morawska L, Johnson GR, Faghihi EM, Kim CS, Kim YH, Chu MC, Guardado JA, Salas A, Capannelli G, Costa C, Bostrom T, Jämting ÅK, Lawn MA, Adlem L, Vaslin-Reimann S (2013) Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study. J Nanopart Res 15(10):1–36. doi:10.1007/s11051-013-1919-4
Orji NG, Dixson RG, Garcia-Gutierrez DI, Bunday BD, Bishop M, Cresswell MW, Allen RA, Allgair JA (2007) TEM calibration methods for critical dimension standards. Proc SPIE 6518. doi:10.1117/12.713368
Pyrz WD, Buttrey DJ (2008) Particle size determination using TEM: a discussion of image acquisition and analysis for the novice microscopist. Langmuir 24(20):11350–11360. doi:10.1021/la801367j
Rice SB, Chan C, Brown SC, Eschbach P, Han L, Ensor DS, Stefaniak AB, Bonevich J, Vladár AE, Hight Walker AR, Zheng J, Starnes C, Stromberg A, Ye J, Grulke EA (2013) Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study. Metrologia 50(6):663. doi:10.1088/0026-1394/50/6/663
Roebben G, Rasmussen K, Kestens V, Linsinger TPJ, Rauscher H, Emons H, Stamm H (2013) Reference materials and representative test materials: the nanotechnology case. J Nanopart Res 15(3):1–13. doi:10.1007/s11051-013-1455-2
Roursgaard M, Jensen KA, Danielsen PH, Mikkelsen LÆ, Folkmann JK, Forchammer L, Jantzen K, Klingberg H, Cao Y, Loft S, Møller P (2014) Variability in particle size determination by nanoparticle tracking analysis. Adv Sci Eng Med 6:1–11. doi:10.1111/jth.12602
Saveyn H, De Baets B, Thas O, Hole P, Smith J, Van der Meeren P (2010) Accurate particle size distribution determination by nanoparticle tracking analysis based on 2D Brownian dynamics simulation. J Colloid Interface Sci 352(2):593–600. doi:10.1016/j.jcis.2010.09.006
Tsai DH, Delrio FW, Keene AM, Tyner KM, Maccuspie RI, Cho TJ, Zachariah MR, Hackley VA (2011) Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods. Langmuir 27:2464–2477. doi:10.1021/la104124d
Tuoriniemi J, Johnsson A-CJH, Perez Holmberg J, Gustafsson S, Gallego-Urrea JA, Olsson E, Pettersson JBC, Hassellöv M (2014) Intermethod comparison of the particle size distributions of colloidal silica nanoparticles. Sci Tech Adv Mater 15(3):035009. doi:10.1088/1468-6996/15/3/035009
Van der Meeren P, Kasinos M, Saveyn H (2012) Relevance of two-dimensional Brownian motion dynamics in applying nanoparticle tracking analysis. Methods Mol Biol 906:525–534. doi:10.1007/978-1-61779-953-2_42
Wojdyr M (2010) Fityk : a general-purpose peak fitting program. J Appl Cryst 43:1126–1128. doi:10.1107/S0021889810030499
Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: I. theory. analytical biochemistry 262(2):137–156. doi:10.1006/abio.1998.2759