Fair cubic transition between two circles with one circle inside or tangent to the other (original) (raw)

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, 4th edn. Academic, New York (1997)
    MATH Google Scholar
  2. Farouki, R., Sakkalis, T.: Pythagorean hodographs. IBM J. Res. Develop. 34(5), 736–752 (1990)
    Article MathSciNet Google Scholar
  3. Habib, Z., Sakai, M.: Spiral transition curves and their applications. Sci. Math. Jpn. 61(2), 195–206. e2004, 251–262. http://www.jams.or.jp/scmjol/2004.html (2005)
  4. Habib, Z., Sakai, M.: G 2 Pythogorean hodograph quintic transition between circles with shape control. Comput. Aided Geom. Des. 24(5), 252–266. doi:10.1016/j.cagd.2007.03.004 (2007)
    Article MathSciNet MATH Google Scholar
  5. Habib, Z., Sakai, M.: On PH quintic spirals joining two circles with one circle inside the other. Comput.-Aided Des. 39(2), 125–132. doi:10.1016/j.cad.2006.10.006 (2007)
    Article Google Scholar
  6. Habib, Z., Sakai, M.: Transition between concentric or tangent circles with a single segment of G 2 PH quintic curve. Comput. Aided Geom. Des. 25(4-5), 247–257. doi:10.1016/j.cagd.2007.10.006 (2008)
    Article MathSciNet MATH Google Scholar
  7. Habib, Z., Sarfraz, M., Sakai, M.: Rational cubic spline interpolation with shape control. Comput. Graph. 29(4), 594–605. doi:10.1016/j.cag.2005.05.010 (2005)
    Article Google Scholar
  8. Henrici, P.: Applied and Computational Complex Analysis, vol. 1. Wiley, New York (1988)
    Google Scholar
  9. Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design (Translation by L.L. Schumaker). A. K. Peters, Wellesley (1993)
    Google Scholar
  10. Li, Z., Ma, L., Zhao, M., Mao, Z.: Improvement construction for planar g 2 transition curve between two separated circles. In: Proceedings of 6th International Conference on Computational Science—ICCS, UK, Part II. LNCS, vol. 3992, pp. 358–361. Springer, Berlin. doi:10.1007/11758525 (2006)
  11. Li, Z., Meek, D., Walton, D.: A smooth, obstacle-avoiding curve. Comput. Graph. 30(4), 581–587 (2006)
    Article Google Scholar
  12. Liang, T., Liu, J., Hung, G., Chang, Y.: Practical and flexible path planning for car-like mobile robot using maximal-curvature cubic spiral. Robot. Auton. Syst. 52(4), 312–335 (2005)
    Article Google Scholar
  13. Sakai, M.: Inflection points and singularities on planar rational cubic curve segments. Comput. Aided Geom. Des. 16(3), 149–156 (1999)
    Article MATH Google Scholar
  14. Sakai, M.: Osculatory interpolation. Comput. Aided Geom. Des. 18(8), 739–750 (2001)
    Article MATH Google Scholar
  15. Sarfraz, M.: Curve fitting for large data using rational cubic splines. Int. J. Comput. Their Appl. 10(3) (2003)
  16. Sarfraz, M. (ed.): Geometric Modeling: Techniques, Applications, Systems and Tools. Kluwer, Deventer (2004)
    Google Scholar
  17. Sarfraz, M., Khan, M.: Automatic outline capture of arabic fonts. Int. J. Inf. Sci. 140(3–4), 269–281 (2002)
    MATH Google Scholar
  18. Steven, M.L.: Planning Algorithms. Cambridge University Press, Cambridge (2006)
    MATH Google Scholar
  19. Walton, D.J., Meek, D.S.: A planar cubic Bézier spiral. Comput. Appl. Math. 72(1), 85–100 (1996)
    Article MATH MathSciNet Google Scholar
  20. Walton, D.J., Meek, D.S.: A Pythagorean hodograph quintic spiral. Comput. Aided Des. 28(12), 943–950 (1996)
    Article Google Scholar
  21. Walton, D.J., Meek, D.S.: Planar G 2 transition between two circles with a fair cubic Bézier curve. Comput. Aided Des. 31(14), 857–866 (1999)
    Article MATH Google Scholar
  22. Walton, D.J., Meek, D.S.: Curvature extrema of planar parametric polynomial cubic curves. Comput. Appl. Math. 134(1–2), 69–83 (2001)
    MATH MathSciNet Google Scholar
  23. Walton, D.J., Meek, D.S., Ali, J.M.: Planar G 2 transition curves composed of cubic Bézier spiral segments. Comput. Appl. Math. 157(2), 453–476 (2003)
    Article MATH MathSciNet Google Scholar

Download references