DNA labelling of varieties covered by patent protection: a new solution for managing intellectual property rights in the seed industry (original) (raw)
Abstract
Plant breeders’ rights are undergoing dramatic changes due to changes in patent rights in terms of plant variety rights protection. Although differences in the interpretation of »breeder’s exemption«, termed research exemption in the 1991 UPOV, did exist in the past in some countries, allowing breeders to use protected varieties as parents in the creation of new varieties of plants, current developments brought about by patenting conventionally bred varieties with the European Patent Office (such as EP2140023B1) have opened new challenges. Legal restrictions on germplasm availability are therefore imposed on breeders while, at the same time, no practical information on how to distinguish protected from non-protected varieties is given. We propose here a novel approach that would solve this problem by the insertion of short DNA stretches (labels) into protected plant varieties by genetic transformation. This information will then be available to breeders by a simple and standardized procedure. We propose that such a procedure should consist of using a pair of universal primers that will generate a sequence in a PCR reaction, which can be read and translated into ordinary text by a computer application. To demonstrate the feasibility of such approach, we conducted a case study. Using the Agrobacterium tumefaciens transformation protocol, we inserted a stretch of DNA code into Nicotiana benthamiana. We also developed an on-line application that enables coding of any text message into DNA nucleotide code and, on sequencing, decoding it back into text. In the presented case study, a short command line coding the phrase »Hello world« was transformed into a DNA sequence that was inserted in the plant genome. The encoded message was reconstructed from the resulting T1 seedlings with 100 % accuracy. The feasibility and possible other applications of this approach are discussed.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime Subscribe now
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
Similar content being viewed by others
References
- Ben-Ayed R, Grati-Kamoun N, Sans-Grout C, Moreau F, Rebai A (2012) Characterization and authenticity of virgin olive oil (Olea europaea L.) cultivars by microsatellite markers. Eur Food Res Technol 234:263–271. doi:10.1007/s00217-011-1631-5
Article CAS Google Scholar - Blakeney M (2012) Patenting of plant varieties and plant breeding methods. J Exp Bot 63:1069–1074. doi:10.1093/jxb/err368
Article CAS PubMed Google Scholar - Bock R (2014) Genetic engineering of the chloroplast: novel tools and new applications. Curr Opin Biotechnol 26:7–13. doi:10.1016/j.copbio.2013.06.004
Article CAS PubMed Google Scholar - Bombarely A, Rosli HG, Vrebalov J, Moffett P, Mueller LA, Martin GB (2012) A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol Plant-Microbe Interact 25(12):1523–1530
Article CAS PubMed Google Scholar - Deibel E (2013) Open variety rights: rethinking the commodification of plants. J Agric Change 13:282–309. doi:10.1111/joac.12004
Article Google Scholar - Duran C, Appleby N, Edwards D, Batley J (2009) Molecular genetic markers: discovery, applications, data storage and visualization. Curr Bioinform 4:16–27. doi:10.2174/157489309787158198
Article CAS Google Scholar - Faize M, Faize L, Burgos L (2010) Using quantitative real-time PCR to detect chimeras in transgenic tobacco and apricot and to monitor their dissociation. BMC Biotechnol 10:53. doi:10.1186/1472-6750-10-53
Article PubMed PubMed Central Google Scholar - He J, Zhao X, Laroche A, Lu ZX, Liu H, Li Z (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484. doi:10.3389/fpls.2014.00484
Article PubMed PubMed Central Google Scholar - Hou LL, Yau YY, Wei JJ, Han ZG, Dong ZC, Ow DW (2014) An open-source system for in planta gene stacking by Bxb1 and Cre recombinases. Mol Plant 7:1756–1765. doi:10.1093/mp/ssu107
Article CAS PubMed Google Scholar - Huffman DA (1952) A method for the construction of minimum redundancy codes. Proc IRE 40:1098–1101. doi:10.1109/JRPROC.1952.273898
Article Google Scholar - Khatodia S, Bhatotia K, Passricha N, Khurana SMP, Tuteja N (2016) The CRISPR/Cas genome-editing tool: application in improvement of crops. Front Plant Sci 7: Article Number: 506. doi:10.3389/fpls.2015.00506
- Langtangen HP (2008) Python scripting for computational science. Springer, Berlin, p 756
Book Google Scholar - Lutz M (2010) Programming python, 4th edn. O’Reilly Media, Inc., Sebastopol, p 1632
Google Scholar - Ossowski S, Schneeberger K, Lucas-Lledo JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327(5961):92–94
Article CAS PubMed Google Scholar - Petolino JF (2015) Genome editing in plants via designed zinc finger nucleases. In Vitro Cell Dev-Plant 51:1–8. doi:10.1007/s11627-015-9663-3
Article CAS Google Scholar - Puddu M, Paunescu D, Stark WJ, Grass RN (2014) Magnetically recoverable, thermostable, hydrophobic DNA/silica encapsulates and their application as invisible oil tags. ACS Nano 8:2677–2685. doi:10.1021/nn4063853
Article CAS PubMed Google Scholar - Rukavtsova EB, Lebedeva AA, Zakharchenko NS, Buryanov YI (2013) The ways to produce biologically safe marker-free transgenic plants. Russ J Plant Phys 60:14–26. doi:10.1134/S1021443712060131
Article CAS Google Scholar - Susič N, Bohanec B, Murovec J (2014) _Agrobacterium tumefaciens_-mediated transformation of bush monkey-flower (Mimulus aurantiacus Curtis) with a new reporter gene ZsGreen. Plant Cell Tiss Org Cult 116:243–251. doi:10.1007/s11240-013-0402-3
Article Google Scholar - Weng H, Pan A, Yang L, Zhang C, Liu Z, Zhang D (2004) Estimating number of transgene copies in transgenic rapeseed by real-time PCR assay with HMG I/Y as an endogenous reference gene. Plant Mol Biol Rep 22:289–300. doi:10.1007/BF02773139
Article CAS Google Scholar - Xu Y (2010) Molecular plant breeding. CABI, Wallingford, p 734
Book Google Scholar - Yau YY, Stewart CN (2013) Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnol 13:36. doi:10.1186/1472-6750-13-36
Article CAS PubMed PubMed Central Google Scholar
Acknowledgments
This work was supported by research Grant P4-0077 (Genetics and modern technologies of agricultural plants) from the Slovenian Research Agency.
Author information
Authors and Affiliations
- Faculty of Medicine, University of Maribor, Taborska 8, 2000, Maribor, Slovenia
Karin Fister - Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova 17, 2000, Maribor, Slovenia
Iztok Fister Jr. - Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
Jana Murovec & Borut Bohanec
Authors
- Karin Fister
You can also search for this author inPubMed Google Scholar - Iztok Fister Jr.
You can also search for this author inPubMed Google Scholar - Jana Murovec
You can also search for this author inPubMed Google Scholar - Borut Bohanec
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toBorut Bohanec.
Rights and permissions
About this article
Cite this article
Fister, K., Fister, I., Murovec, J. et al. DNA labelling of varieties covered by patent protection: a new solution for managing intellectual property rights in the seed industry.Transgenic Res 26, 87–95 (2017). https://doi.org/10.1007/s11248-016-9981-1
- Received: 05 April 2016
- Accepted: 18 August 2016
- Published: 27 August 2016
- Issue Date: February 2017
- DOI: https://doi.org/10.1007/s11248-016-9981-1