Removal of Arsenic and Iron from Acidic Water Using Zeolite and Limestone: Batch and Column Studies (original) (raw)
References
Armienta, M. A., Micete, S., & Flores-Valverde, E. (2009). Feasibility of arsenic removal from contaminated water using indigenous limestone. In J. Bundschuh, M. A. Armienta, P. Birkle, P. Bhattacharya, J. Matschullat, & A. B. Mukherjee (Eds.), Natural arsenic in groundwaters of Latin America (pp. 505–510, Interdisciplinary Books Arsenic in the Environment, Vol. 1). Lisse, The Netherlands: CRC Press/Balkema Publishers.
Armienta, M. A., Villaseñor, G., Cruz, O., Ceniceros, N., Aguayo, A., & Morton, O. (2012). Geochemical processes and mobilization of toxic metals and metalloids in an As-rich base metal waste pile in Zimapán, Central Mexico. Applied Geochemistry, 27(11), 2225–2237. doi:10.1016/j.apgeochem.2012.01.015. ArticleCAS Google Scholar
Baskan, M. B., & Pala, A. (2014). Batch and fixed-bed column studies of arsenic adsorption on the natural and modified clinoptilolite. Water, Air, and Soil Pollution, 225(1). doi:10.1007/s11270-013-1798-4.
Bakatula, E. N., Molaudzi, R., Nekhunguni, P., & Tutu, H. (2017). The removal of arsenic and uranium from aqueous solutions by sorption onto iron oxide-coated zeolite (IOCZ). Water, Air, and Soil Pollution, 228.
Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309–319. ArticleCAS Google Scholar
Canga, E., Kjaergaard, C., Iversen, B. V., & Heckrath, G. J. (2016). Agricultural drainage filters. I. Filter hydro-physical properties and tracer transport. Water, Air, and Soil Pollution, 227.
Cederkvist, K., Holm, P. E., & Jensen, M. B. (2010). Full-scale removal of arsenate and chromate from water using a limestone and ochreous sludge mixture as a low-cost sorbent material. Water Environment Research, 82(5), 401–408. doi:10.2175/106143009X12487095237314. ArticleCAS Google Scholar
Cravotta III, C. A. (2010). Abandoned mine drainage in the Swatara Creek Basin, Southern Anthracite Coalfield, Pennsylvania, USA: 2. Performance of treatment systems. Mine Water and the Environment, 29(3), 200–216. doi:10.1007/s10230-010-0113-5. ArticleCAS Google Scholar
Cravotta III, C. A., & Trahan, M. K. (1999). Limestone drains to increase pH and remove dissolved metals from acidic mine drainage. Applied Geochemistry, 14(5), 581–606. ArticleCAS Google Scholar
Croghan, C. W., & Egeghy, P. P. (2003). Methods of dealing with values below the limit of detection using SAS. Presented at Southeastern SAS User Group, St. Petersburg, FL, September 22–24, 2003.
Chutia, P., Kato, S., Kojima, T., & Satokawa, S. (2009). Arsenic adsorption from aqueous solution on synthetic zeolites. Journal of Hazardous Materials, 162(1), 440–447. ArticleCAS Google Scholar
Davis, A., Webb, C., Dixon, D., Sorensen, J., & Dawadi, S. (2007). Arsenic removal from drinking water by limestone-based material. Mining Engineering, 59(2), 71–74. CAS Google Scholar
Elizalde-González, M. P., Mattusch, J., Einicke, W. D., & Wennrich, R. (2001). Sorption on natural solids for arsenic removal. Chemical Engineering Journal, 81(1–3), 187–195. Article Google Scholar
Groudev, S., Georgiev, P., Spasova, I., & Nicolova, M. (2008). Bioremediation of acid mine drainage in a uranium deposit. Hydrometallurgy, 94(1–4), 93–99. ArticleCAS Google Scholar
Guerra, P., Gonzalez, C., Escauriaza, C., Pizarro, G., & Pasten, P. (2016). Incomplete mixing in the fate and transport of arsenic at a river affected by acid drainage. Water, Air, & Soil Pollution, 227, (3). doi:10.1007/s11270-016-2767-5.
IBM Corporation. (2013). SPSS statistics (p. 22). Google Scholar
Inskeep, W. P., McDermott, T. R., & Fendorf, S. (2002). Arsenic (V)/(III) cycling in soils and natural waters: Chemical and microbiological processes. In W. T. Frankenberg Jr. (Ed.), Environmental chemistry of arsenic (pp. 183–215). New York: Marcel Dekker, Inc.. Google Scholar
Jain, C. K., & Singh, R. D. (2012). Technological options for the removal of arsenic with special reference to South East Asia. Journal of Environmental Management, 107, 1–18. doi:10.1016/j.jenvman.2012.04.016. ArticleCAS Google Scholar
Jeon, C. S., Baek, K., Park, J. K., Oh, Y. K., & Lee, S. D. (2009). Adsorption characteristics of As(V) on iron-coated zeolite. Journal of Hazardous Materials, 163(2–3), 804–808. doi:10.1016/j.jhazmat.2008.07.052. ArticleCAS Google Scholar
Kadlec, R. H., & Wallace, S. D. (2009). Treatment wetlands (second ed.). Boca Raton, FL: CRC Press. Google Scholar
Kröpfelová, L., Vymazal, J., Švehla, J., & Štíchová, J. (2009). Removal of trace elements in three horizontal sub-surface flow constructed wetlands in the Czech Republic. Environmental Pollution, 157(4), 1186–1194. doi:10.1016/j.envpol.2008.12.003. Article Google Scholar
Labastida, I., Armienta, M. A., Lara-Castro, R. H., Aguayo, A., Cruz, O., & Ceniceros, N. (2013). Treatment of mining acidic leachates with indigenous limestone, Zimapan Mexico. Journal of Hazardous Materials, 262, 1187–1195. ArticleCAS Google Scholar
Leiva, E. D., Rámila, C. D., Vargas, I. T., Escauriaza, C. R., Bonilla, C. A., Pizarro, G. E., et al. (2014). Natural attenuation process via microbial oxidation of arsenic in a high Andean watershed. Science of the Total Environment, 466-467, 490–502. doi:10.1016/j.scitotenv.2013.07.009. ArticleCAS Google Scholar
Li, Z., Jean, J. S., Jiang, W. T., Chang, P. H., Chen, C. J., & Liao, L. (2011). Removal of arsenic from water using Fe-exchanged natural zeolite. Journal of Hazardous Materials, 187(1–3), 318–323. doi:10.1016/j.jhazmat.2011.01.030. ArticleCAS Google Scholar
Liu, G., & Cai, Y. (2007). Chapter 31 Arsenic speciation in soils: an analytical challenge for understanding arsenic biogeochemistry. In R. D. Dibyendu Sarkar, & H. Robyn (Eds.), Developments in environmental science (pp. 685–708): Elsevier.
Lizama, A. K., Fletcher, T. D., & Sun, G. (2011b). Enhancing the removal of arsenic, boron and heavy metals in subsurface flow constructed wetlands using different supporting media. Water Science and Technology, 63(11), 2612–2618. doi:10.2166/wst.2011.533. Article Google Scholar
Lizama, A. K., Fletcher, T. D., & Sun, G. (2012). The effect of substrate media on the removal of arsenic, boron and iron from an acidic wastewater in planted column reactors. Chemical Engineering Journal, 179, 119–130. doi:10.1016/j.cej.2011.10.069. Article Google Scholar
Lizama, A. K., McCarthy, D. T., & Fletcher, T. D. (2014). The influence of media type on removal of arsenic, iron and boron from acidic wastewater in horizontal flow wetland microcosms planted with Phragmites australis. Chemical Engineering Journal, 246(0), 217–228. doi:10.1016/j.cej.2014.02.035. Article Google Scholar
Marchand, L., Mench, M., Jacob, D. L., & Otte, M. L. (2010). Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review. Environmental Pollution, 158(12), 3447–3461. ArticleCAS Google Scholar
Marshall, G., Ferreccio, C., Yuan, Y., Bates, M. N., Steinmaus, C., Selvin, S., et al. (2007). Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. Journal of the National Cancer Institute, 99(12), 920–928. doi:10.1093/jnci/djm004. ArticleCAS Google Scholar
Motsi, T. (2010). Remediation of acid mine drainage using natural zeolite. University of Birmingham.
Motsi, T., Rowson, N. A., & Simmons, M. J. H. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing, 92(1–2), 42–48. doi:10.1016/j.minpro.2009.02.005. ArticleCAS Google Scholar
Nilsson, L., Pettersson, S., & Sandstrom, A. (1994). Iron and arsenic removal from bacterial leaching effluents by precipitation with limestone. Scandinavian Journal of Metallurgy, 23(4), 184–189. CAS Google Scholar
Ocinski, D., Jacukowicz-Sobala, I., Mazur, P., Raczyk, J., & Kociolek-Balawejder, E. (2016). Water treatment residuals containing iron and manganese oxides for arsenic removal from water—characterization of physicochemical properties and adsorption studies. Chemical Engineering Journal, 294, 210–221. doi:10.1016/j.cej.2016.02.111. ArticleCAS Google Scholar
Olmos-Márquez, M. A., Alarcón-Herrera, M. T., & Martín-Domínguez, I. R. (2012). Performance of Eleocharis macrostachya and its importance for arsenic retention in constructed wetlands. Environmental Science and Pollution Research, 19(3), 763–771. doi:10.1007/s11356-011-0598-x. Article Google Scholar
Pagnanelli, F., De Michelis, I., Di Tommaso, M., Ferella, F., Toro, L., & Vegliò, F. (2011). Treatment of acid mine drainage by a combined chemical/biological column apparatus: mechanisms of heavy metal removal. In Mine drainage and related problems (pp. 239-263): Nova science publishers, Inc.
Payne, K. B., & Abdel-Fattah, T. M. (2005). Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: effects of pH, temperature, and ionic strength. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 40(4), 723–749. ArticleCAS Google Scholar
Qin, C., Liu, L., Han, Y., Chen, C., & Lan, Y. (2016). Mesoporous magnetic ferrum-yttrium binary oxide: a novel adsorbent for efficient arsenic removal from aqueous solution. Water, Air, and Soil Pollution, 227(9). doi:10.1007/s11270-016-3032-7.
Rahman, K. Z., Wiessner, A., Kuschk, P., van Afferden, M., Mattusch, J., & Müller, R. A. (2011). Fate and distribution of arsenic in laboratory-scale subsurface horizontal-flow constructed wetlands treating an artificial wastewater. Ecological Engineering, 37(8), 1214–1224. Article Google Scholar
Romero, F. M., Armienta, M. A., & Carrillo-Chavez, A. (2004). Arsenic sorption by carbonate-rich aquifer material, a control on arsenic mobility at Zimapán, México. Archives of Environmental Contamination and Toxicology, 47(1), 1–13. ArticleCAS Google Scholar
Romero, F. M., Núñez, L., Gutiérrez, M. E., Armienta, M. A., & Ceniceros-Gómez, A. E. (2011). Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico. Archives of Environmental Contamination and Toxicology, 60(2), 191–203. doi:10.1007/s00244-010-9544-z. ArticleCAS Google Scholar
Saeed, T., & Sun, G. (2011). Enhanced denitrification and organics removal in hybrid wetland columns: Comparative experiments. Bioresource Technology, 102(2), 967–974. doi:10.1016/j.biortech.2010.09.056. ArticleCAS Google Scholar
Sakadevan, K., & Bavor, H. J. (1998). Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems. Water Research, 32(2), 393–399. ArticleCAS Google Scholar
Santomartino, S., & Webb, J. A. (2007). Estimating the longevity of limestone drains in treating acid mine drainage containing high concentrations of iron. Applied Geochemistry, 22(11), 2344–2361. ArticleCAS Google Scholar
Sarkar, A., & Paul, B. (2016). The global menace of arsenic and its conventional remediation—a critical review. Chemosphere, 158, 37–49. ArticleCAS Google Scholar
Schwindaman, J. P., Castle, J. W., & Rodgers, J. H. (2014). Biogeochemical process-based design and performance of a pilot-scale constructed wetland for arsenic removal from simulated Bangladesh groundwater. Water, Air, & Soil Pollution, 225(6), 2009. doi:10.1007/s11270-014-2009-7. Article Google Scholar
Sheoran, A. S., & Sheoran, V. (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Minerals Engineering, 19(2), 105–116. ArticleCAS Google Scholar
Šiljeg, M., Foglar, L., & Gudelj, I. (2012). The removal of arsenic from water with natural and modified clinoptilolite. Chemistry and Ecology, 28(1), 75–87. doi:10.1080/02757540.2011.619531. Article Google Scholar
Šiljeg, M., Stefanovic, S. C., Mazaj, M., Tušar, N. N., Arcon, I., Kovac, J., et al. (2009). Structure investigation of As(III)- and As(V)-species bound to Fe-modified clinoptilolite tuffs. Microporous and Mesoporous Materials, 118(1–3), 408–415. doi:10.1016/j.micromeso.2008.09.009. Google Scholar
Simsek, E. B., & Beker, U. (2014). Equilibrium arsenic adsorption onto metallic oxides : isotherm models, error analysis and removal mechanism. Korean Journal of Chemical Engineering, 31(11), 2057–2069. doi:10.1007/s11814-014-0176-2. ArticleCAS Google Scholar
Singh, R., Singh, S., Parihar, P., Singh, V. P., & Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicology and Environmental Safety, 112, 247–270. doi:10.1016/j.ecoenv.2014.10.009. ArticleCAS Google Scholar
Snoeyink, V. L., & Jenkins, D. (1980). Water chemistry. New York: John Wiley & Sons. Google Scholar
Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry: chemical equilibria and rates in natural waters (3ed ed.). John Wiley & Sons, INC.
Wallace, S. D., & Knight, R. (2006). Small-scale constructed wetland treatment systems: feasibility, design criteria, and O&M requirements. Final report (p. 350). Alexandria, VA: Water Environment Research Foundation (WERF) and IWA Publishing. Google Scholar
Wang, J. W., Bejan, D., & Bunce, N. J. (2003). Removal of arsenic from synthetic acid mine drainage by electrochemical pH adjustment and coprecipitation with iron hydroxide. Environmental Science and Technology, 37(19), 4500–4506. ArticleCAS Google Scholar
Wichterlová, B., Kubelková, L., Nováková, J., & Jíru, P. (1982). Behaviour of Fe species in zeolite structure. Studies in Surface Science and Catalysis, 12, 143–150. Article Google Scholar
Williams, M. (2001). Arsenic in mine waters: international study. Environmental Geology, 40(3), 267–278. ArticleCAS Google Scholar
Wium-Andersen, T., Nielsen, A. H., Hvitved-Jacobsen, T., Kristensen, N. K., Brix, H., Arias, C., et al. (2012). Sorption media for stormwater treatment—a laboratory evaluation of five low-cost media for their ability to remove metals and phosphorus from artificial stormwater. Water Environment Research, 84(7), 605–616. doi:10.2175/106143012X13373550426832. ArticleCAS Google Scholar
Zipper, C. E., & Skousen, J. G. (2010). Influent water quality affects performance of passive treatment systems for acid mine drainage. Mine Water and the Environment, 29(2), 135–143. doi:10.1007/s10230-010-0101-9. ArticleCAS Google Scholar
Zurita, F., Del Toro-Sánchez, C. L., Gutierrez-Lomelí, M., Rodriguez-Sahagún, A., Castellanos-Hernandez, O. A., Ramírez-Martínez, G., et al. (2012). Preliminary study on the potential of arsenic removal by subsurface flow constructed mesocosms. Ecological Engineering, 47, 101–104. doi:10.1016/j.ecoleng.2012.06.018. Article Google Scholar