Curcumin Protects Neuronal Cells from Japanese Encephalitis Virus-Mediated Cell Death and also Inhibits Infective Viral Particle Formation by Dysregulation of Ubiquitin–Proteasome System (original ) (raw )
Agee JM, Flanagan T, Blackbourne LH, Kron IL, Tribble CG (1991) Reducing postischemic paraplegia using conjugated superoxide dismutase. Ann Thorac Surg 5:911–915Article Google Scholar
Bala K, Tripathy B, Sharma D (2006) Neuroprotective and anti-ageing effects of curcumin in aged rat brain regions. Biogerontology 7:81–89. doi:10.1007/s10522-006-6495-x http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=16802111&dopt=Abstract Article PubMed CAS Google Scholar
Betteridge DJ (2000) What is oxidative stress? Metabolism 49:3–8. doi:10.1016/S0026-0495(00)80077-3 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=10693912&dopt=Abstract Article PubMed CAS Google Scholar
Billiet L, Rouis M (2008) Thioredoxin-1 is a novel and attractive therapeutic approach for various diseases including cardiovascular disorders. Cardiovasc Hematol Disord Drug Targets 8:293–296. doi:10.2174/187152908786786179 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=19075641&dopt=Abstract Article PubMed CAS Google Scholar
Calabrese V, Bates TE, Mancuso C, Cornelius C, Ventimiglia B, Cambria BT, Di Renzo L, De Lorenzo A, Dinkova-Kostova AT (2008) Curcumin and the cellular stress response in free radical-related diseases. Mol Nutr Food Res 52:1062–1073. doi:10.1002/mnfr.200700316 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=18792015&dopt=Abstract Article PubMed CAS Google Scholar
Chen CJ, Raung SL, Kuo MD, Wang YM (2002) Suppression of Japanese encephalitis virus infection by non-steroidal anti-inflammatory drugs. J Gen Virol 83:1897–1905PubMed CAS Google Scholar
Ciriolo MR (2005) Redox control of apoptosis. Antioxid Redox Signal 7:432–435. doi:10.1089/ars.2005.7.432 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=15706090&dopt=Abstract Article PubMed CAS Google Scholar
Cole GM, Teter B, Frautschy SA (2007) Neuroprotective effects of curcumin. Adv Exp Med Biol 595:197–212. doi:10.1007/978-0-387-46401-5_8 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=17569212&dopt=Abstract Article PubMed Google Scholar
Endo H, Nito C, Kamada H, Yu F, Chan PH (2007) Reduction in oxidative stress by SOD-1 overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/GSK3β survival signaling. J Cereb Blood Flow Metab 27:975–982 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=16969382&dopt=Abstract PubMed CAS Google Scholar
Fujimoto K, Iwasa C, Kawaguchi H, Yasugi E, Oshima M (1999) Cell membrane dynamics and the induction of apoptosis by lipid compounds. FEBS Lett 446:113–116. doi:10.1016/S0014-5793(99)00204-5 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=10100625&dopt=Abstract Article PubMed CAS Google Scholar
Gabai VL, Meriin AB, Mosseri DD, Caroni AW, Ritsi S, Shifrin VI, Sherman MY (1997) Hsp70 prevents activation of stress kinases: A novel pathway of cellular thermotolerance. J Biol Chem 272:18033–18037. doi:10.1074/jbc.272.29.18033 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=9218432&dopt=Abstract Article PubMed CAS Google Scholar
Galinier RE, Gout H, Lortat-Jacob JW, Chroboczek J (2002) Adenovirus protein involved in virus internalization recruits ubiquitin-protein ligases. Biochemistry 41:14299–14305. doi:10.1021/bi020125b http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=12450395&dopt=Abstract Article PubMed CAS Google Scholar
Ghosh D, Basu A (2008) Present perspectives on flaviviral chemotherapy. Drug Discov Today 13:619–624. doi:10.1016/j.drudis.2008.04.001 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=18598919&dopt=Abstract Article PubMed CAS Google Scholar
Gorria M, Tekpli X, Sergent O, Huc L, Gaboriau F, Rissel M, Chevanne M, Dimanche-Boitrel MT, Lagadic-Gossmann D (2006) Membrane fluidity changes are associated with benzo[a]pyrene-induced apoptosis in F258 cells: protection by exogenous cholesterol. Ann N Y Acad Sci 1090:108–112. doi:10.1196/annals.1378.011 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=17384252&dopt=Abstract Article PubMed CAS Google Scholar
Halliwell B (1992) J Neurochem 59:1609–1623. doi:10.1111/j.1471-4159.1992.tb10990.x http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=1402908&dopt=Abstract Article PubMed CAS Google Scholar
Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716. doi:10.2165/00002512-200118090-00004 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=11599635&dopt=Abstract Article PubMed CAS Google Scholar
Halliwell B, Gutteridge JM, Cross CE (1992) Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med 119:598–620 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=1593209&dopt=Abstract PubMed CAS Google Scholar
Jana NR, Dikshit P, Goswami A, Nukina N (2004) Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway. J Biol Chem 279:11680–11685. doi:10.1074/jbc.M310369200 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=14701837&dopt=Abstract Article PubMed CAS Google Scholar
Joe B, Vijaykumar M, Lokesh BR (2004) Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 44:97–111. doi:10.1080/10408690490424702 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=15116757&dopt=Abstract Article PubMed CAS Google Scholar
Kasparia M, Tavalaib N, Stammingerb T, Zimmermannc A, Schilfa R, Bogner E (2008) Proteasome inhibitor MG132 blocks viral DNA replication and assembly of human cytomegalovirus. FEBS Lett 582:666–672. doi:10.1016/j.febslet.2008.01.040 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=18242185&dopt=Abstract Article CAS Google Scholar
Kaur R, Vrati S (2003) Development of a recombinant vaccine against Japanese encephalitis. J Neurovirol 9:421–431. doi:10.1080/713831600 Article PubMed CAS Google Scholar
Kutluay SB, Doroghazi J, Roemer ME, Triezenberg SJ (2008) Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity. Virology 373:239–247. doi:10.1016/j.virol.2007.11.028 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=18191976&dopt=Abstract Article PubMed CAS Google Scholar
Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW (2005) DNA repair, genome stability, and aging. Cell 120:497–512. doi:10.1016/j.cell.2005.01.028 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=15734682&dopt=Abstract Article PubMed CAS Google Scholar
Mishra MK, Ghosh D, Duseja R, Basu A (2009) Antioxidant potential of minocycline in Japanese encephalitis virus infection in N2a cells: correlation with membrane fluidity and cell death. Neurochem Int 54:464–470. doi:10.1016/j.neuint.2009.01.022 Article PubMed CAS Google Scholar
Rahmani M, Reese E, Dai Y, Bauer C, Payne SG, Dent P, Spiegel S, Grant S (2005) Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Res 65:2422–2432. doi:10.1158/0008-5472.CAN-04-2440 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=15781658&dopt=Abstract Article PubMed CAS Google Scholar
Raung SL, Kuo MD, Wang YM, Chen CJ (2001) Role of reactive oxygen intermediates in Japanese encephalitis virus infection in murine neuroblastoma cells. Neurosci Lett 315:9–12. doi:10.1016/S0304-3940(01)02300-X http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=11711202&dopt=Abstract Article PubMed CAS Google Scholar
Schreck R, Baeuerle PA (1994) Assessing oxygen radicals as mediators in activation of inducible eukaryotic transcription factor NF-kappa B. Methods Enzymol 234:151–163. doi:10.1016/0076-6879(94)34085-4 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=7808288&dopt=Abstract Article PubMed CAS Google Scholar
Sergent O, Pereira M, Belhomme M, Chevanne M, Huc L, Lagadic-Gossmann D (2005) Role for membrane fluidity in ethanol-induced oxidative stress of primary rat hepatocytes. J Pharmacol Exp Ther 313:104–111. doi:10.1124/jpet.104.078634 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=15634942&dopt=Abstract Article PubMed CAS Google Scholar
Si X, Wang Y, Wong J, Zhang J, McManus BM, Luo H (2007) Dysregulation of the ubiquitin–proteasome system by curcumin suppresses coxsackievirus B3 replication. J Virol 81:3142–3150. doi:10.1128/JVI.02028-06 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=17229707&dopt=Abstract Article PubMed CAS Google Scholar
Si X, Gao G, Wong J, Wang Y, Zhang J, Luo H (2008) Ubiquitination is required for effective replication of coxsackievirus B3. PLoS One 3:e2585. doi:10.1371/journal.pone.0002585 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=18612413&dopt=Abstract Article PubMed CAS Google Scholar
Su H-L, Liao CL, Lin YL (2002) Japanese encephalitis virus infection initiates endoplasmic reticulum stress and an unfolded protein response. J Virol 76:4162–4171. doi:10.1128/JVI.76.9.4162-4171.2002 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=11932381&dopt=Abstract Article PubMed CAS Google Scholar
Swarup V, Das S, Ghosh S, Basu A (2007a) Tumor necrosis factor receptor-1-induced neuronal death by TRADD contributes to the pathogenesis of Japanese encephalitis. J Neurochem 103:771–783. doi:10.1111/j.1471-4159.2007.04790.x http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=17666051&dopt=Abstract Article PubMed CAS Google Scholar
Swarup V, Ghosh J, Ghosh S, Saxena A, Basu A (2007b) Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob Agents Chemother 51:3367–3370. doi:10.1128/AAC.00041-07 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=17576830&dopt=Abstract Article PubMed CAS Google Scholar
Swarup V, Ghosh J, Mishra MK, Basu A (2008) Novel strategy for treatment of Japanese encephalitis using arctigenin, a plant lignan. J Antimicrob Chemother 61:679–688. doi:10.1093/jac/dkm503 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=18230688&dopt=Abstract Article PubMed CAS Google Scholar
Taylor GM, Hanson PI, Kielian M (2007) Ubiquitin depletion and dominant-negative vps4 inhibit rhabdovirus budding without affecting alphavirus budding. J Virol 81:13631–13639. doi:10.1128/JVI.01688-07 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=17913808&dopt=Abstract Article PubMed CAS Google Scholar
Yu GY, Lai MMC (2005) The ubiquitin–proteasome system facilitates the transfer of murine coronavirus from endosome to cytoplasm during virus entry. J Virol 79:644–648. doi:10.1128/JVI.79.1.644-648.2005 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=15596861&dopt=Abstract Article PubMed CAS Google Scholar
Zhadina M, McClure MO, Johnson MC, Bieniasz PD (2007) Ubiquitin-dependent virus particle budding without viral protein ubiquitination. Proc Natl Acad Sci U S A 104:20031–20036. doi:10.1073/pnas.0708002104 http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=18056634&dopt=Abstract Article PubMed CAS Google Scholar