Genz, A., Bretz, F.: Computation of Multivariate Normal and t Probabilities. Springer, New York (2009) BookMATH Google Scholar
Iyengar, S.: Evaluation of normal probabilities of symmetric regions. SIAM J. Sci. Stat. Comput. 9, 812–837 (1988) ArticleMathSciNetMATH Google Scholar
Kannan, R., Li, G.: Sampling according to the multivariate normal density. In: FOCS ’96: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, Washington, DC, USA, p. 204. IEEE Computer Society (1996)
Martynov, G.: Evaluation of the normal distribution function. J. Soviet Math 77, 1857–1875 (1980) MATH Google Scholar
Schellenberger, J., Palsson, B.: Use of randomized sampling for analysis of metabolic networks. J. Biol. Chem. 284(9), 5457–5461 (2009) Article Google Scholar
Somerville, P.N.: Numerical computation of multivariate normal and multivariate-t probabilities over convex regions. J. Comput. Graph. Stat. 7, 529–545 (1998) MathSciNet Google Scholar
Dyer, M.E., Frieze, A.M., Kannan, R.: A random polynomial time algorithm for approximating the volume of convex bodies. In: STOC, pp. 375–381 (1989)
Dyer, M.E., Frieze, A.M., Kannan, R.: A random polynomial-time algorithm for approximating the volume of convex bodies. J. ACM 38(1), 1–17 (1991) ArticleMathSciNetMATH Google Scholar
Lovász, L., Vempala, S.: Simulated annealing in convex bodies and an \(O^*(n^4)\) volume algorithm. J. Comput. Syst. Sci. 72(2), 392–417 (2006) ArticleMathSciNetMATH Google Scholar
Cousins, B., Vempala, S.: A cubic algorithm for computing Gaussian volume. In: SODA, pp. 1215–1228 (2014)
Cousins, B., Vempala, S.: Bypassing KLS: Gaussian cooling and an \(O^*(n^3)\) volume algorithm. In: STOC, pp. 539–548 (2015)
Lovász, L., Deák, I.: Computational results of an \(o^*(n^4)\) volume algorithm. Eur. J. Oper. Res. 216 (2012)
Emiris, I., Fisikopoulos, V.: Efficient random-walk methods for approximating polytope volume. In: Proceedings of the 30th Annual Symposium on Computational Geometry, p. 318. ACM (2014)
Adamczak, R., Litvak, A., Pajor, A., Tomczak-Jaegermann, N.: Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles. J. Am. Math. Soc. 23, 535–561 (2010) ArticleMathSciNetMATH Google Scholar
Štefankovič, D., Vempala, S., Vigoda, E.: Adaptive simulated annealing: a near-optimal connection between sampling and counting. J. ACM 56(3), 18–36 (2009) MathSciNetMATH Google Scholar
Kannan, R., Lovász, L., Simonovits, M.: Random walks and an \(O^*(n^5)\) volume algorithm for convex bodies. Random Struct. Algorithms 11, 1–50 (1997) ArticleMathSciNetMATH Google Scholar
Gillman, D.: A Chernoff bound for random walks on expander graphs. In: FOCS, pp. 680–691. IEEE Comput. Soc. Press, Los Alamitos (1993)
Kannan, R., Lovász, L., Simonovits, M.: Isoperimetric problems for convex bodies and a localization lemama. Discrete Comput. Geom. 13, 541–559 (1995) ArticleMathSciNetMATH Google Scholar
Canfield, E.R., McKay, B.: The asymptotic volume of the Birkhoff polytope. Online J. Anal. Comb. 4, 4 (2009) MathSciNetMATH Google Scholar
De Loera, J.A., Liu, F., Yoshida, R.: A generating function for all semi-magic squares and the volume of the Birkhoff polytope. J. Algebraic Comb. 30(1), 113–139 (2009) ArticleMathSciNetMATH Google Scholar
Zeilberger, D.: Proof of a conjecture of Chan, Robbins, and Yuen. Electron. Trans. Numer. Anal. 9, 147–148 (electronic) (1999) [Orthogonal polynomials: numerical and symbolic algorithms (Leganés, 1998)]
Beck, M., Pixton, D.: The Ehrhart polynomial of the Birkhoff polytope. Discrete Comput. Geom. 30(4), 623–637 (2003) ArticleMathSciNetMATH Google Scholar
Chan, C., Robbins, D.: On the volume of the polytope of doubly stochastic matrices. Exp. Math. 8(3), 291–300 (1999) ArticleMathSciNetMATH Google Scholar
Dyer, M., Gritzmann, P., Hufnagel, A.: On the complexity of computing mixed volumes. SIAM J. Comput. 27(2), 356–400 (1998) ArticleMathSciNetMATH Google Scholar