Stretching directions in cislunar space: Applications for departures and transfer design (original) (raw)

References

  1. Zimovan, E. M., Howell, K. C., Davis, D. C. Near rectilinear halo orbits and their application in cislunar space. In: Proceedings of the 3rd IAA Conference on Dynamics and Control of Space Systems, Moscow, Russia, 2017: IAA-AAS-DyCoSS3–125.
  2. Guzzetti, D., Zimovan, E. M., Howell, K. C., Davis, D. C. Stationkeeping analysis for spacecraft in lunar near rectilinear halo orbits. In: Proceedings of the 27th AAS/AIAA Space Flight Mechanics Meeting, San Antonio, USA, 2017: AAS 17–395.
  3. Cavallari, I., Petitdemange, R., Lizy-Destrez, S. Transfer from a lunar distant retrograde orbit to Mars through Lyapunov orbits. In: Proceedings of the 27th International Symposium on Space Flight Dynamics, Melbourne, Australia, 2019: 1393–1398.
  4. Martinez, R., Goodliff, K. E., Whitley, R. J. ISECG global exploration roadmap: A stepwise approach to deep space exploration. In: Proceedings of the AIAA SPACE 2013 Conference and Exposition, San Diego, USA, 2013: AIAA 2013–5504.
  5. Mazanek, D. D., Merrill, R. G., Brophy, J. R., Mueller, R. P. Asteroid Redirect Mission concept: A bold approach for utilizing space resources. Acta Astronautica, 2015, 117: 163–171.
    Article Google Scholar
  6. Prado, P. B., Howell, K. C., Folta, D. An energy-informed adaptive algorithm for low-thrust spacecraft cislunar trajectory design. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, South Lake Tahoe, USA, 2020: AAS 20–579.
  7. Vutukuri, S. Spacecraft trajectory design techniques using resonant orbits. M.S. Thesis. West Lafayette, USA: Purdue University, 2018.
    Google Scholar
  8. Das-Stuart, A., Howell, K. C., Folta, D. C. Rapid trajectory design in complex environments enabled by reinforcement learning and graph search strategies. Acta Astronautica, 2020, 171: 172–195.
    Article Google Scholar
  9. Zimovan-Spreen, E. M., Howell, K. C. Dynamical structures nearby NRHOS with applications in cislunar space. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Portland, USA, 2019.
  10. Capdevila, L. R., Howell, K. C. A transfer network linking Earth, Moon, and the triangular libration point regions in the Earth—Moon system. Advances in Space Research, 2018, 62(7): 1826–1852.
    Article Google Scholar
  11. Muralidharan, V., Howell, K. C. Stationkeeping in Earth—Moon near rectilinear halo orbits. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, South Lake Tahoe, USA, 2020: AAS 20–642.
  12. Muralidharan, V., Howell, K. C. Orbit maintenance strategy for Earth—Moon halo orbits. In: Proceedings of the 31st AAS/AIAA Spaceflight Mechanics Meeting, Charlotte, North Carolina, USA, 2021: AAS 21–366.
  13. Muralidharan, V. Orbit maintenance strategies for Sun—Earth/Moon libration point missions: Parameter selection for target point and Cauchy—Green tensor approaches. M.S. Thesis. West Lafayette, USA: Purdue University, 2017.
    Google Scholar
  14. Muralidharan, V. Stretching directions in cislunar space: Stationkeeping and an application to transfer trajectory design. Ph.D. Dissertation. West Lafayette, USA: Purdue University, 2021.
    Google Scholar
  15. Muralidharan, V., Howell, K. C. Leveraging stretching directions for stationkeeping in Earth—Moon halo orbits. Advances in Space Research, 2022, 69(1): 620–646.
    Article Google Scholar
  16. Oshima, K., Campagnola, S., Yam, C. H., Kayama, Y., Kawakatsu, Y., Ozaki, N., Verspieren, Q., Kakihara, K., Oguri, K., Funase, R. EQUULEUS mission analysis: Design of the transfer phase. In: Proceedings of the 31rt International Symposium on Space Technology and Science, Ehime, Japan, 2017: 3–9.
  17. Oguri, K., Oshima, K., Campagnola, S., Kakihara, K., Ozaki, N., Baresi, N., Kawakatsu, Y., Funase, R. EQUULEUS trajectory design. The Journal of the Astronautical Sciences, 2020, 67(3): 950–976.
    Article Google Scholar
  18. Baresi, N., Dei Tos, D. A., Ikeda, H., Kawakatsu, Y. Trajectory design and maintenance of the Martian Moons eXploration mission around Phobos. Journal of Guidance, Control, and Dynamics, 2020, 44(5): 996–1007.
    Article Google Scholar
  19. Spreen, C., Howell, K., Marchand, B. Node placement capability for spacecraft trajectory targeting in an ephemeris model. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Vail, USA, 2015: AAS 15–638.
  20. Short, C. R., Blazevski, D., Howell, K. C., Haller, G. Stretching in phase space and applications in general nonautonomous multi-body problems. Celestial Mechanics and Dynamical Astronomy, 2015, 122(3): 213–238.
    Article MathSciNet MATH Google Scholar
  21. Szebehely, V. Theory of Orbits: The Restricted Problem of Three Bodies. Elsevier Inc., 1967.
  22. Howell, K. C. Three-dimensional, periodic, ‘halo’ orbits. Celestial Mechanics, 1984, 32(1): 53–71.
    Article MathSciNet MATH Google Scholar
  23. Malonek, H. R., de Almeida, R. A note on a generalized Joukowski transformation. Applied Mathematics Letters, 2010, 23(10): 1174–1178.
    Article MathSciNet MATH Google Scholar
  24. Haller, G. Lagrangian coherent structures from approximate velocity data. Physics of Fluids, 2002, 14(6): 1851–1861.
    Article MathSciNet MATH Google Scholar
  25. Short, C. R., Howell, K. C. Lagrangian coherent structures in various map representations for application to multi-body gravitational regimes. Acta Astronautica, 2014, 94(2): 592–607.
    Article Google Scholar
  26. Davis, D. C., Phillips, S. M., Howell, K. C., Vutukuri, S., McCarthy, B. P. Stationkeeping and transfer trajectory design for spacecraft in cislunar space. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Stevenson, USA, 2017: AAS 17–826.
  27. Boudad, K. K., Davis, D. C., Howell, K. C. Disposal trajectories from near rectilinear halo orbits. In: Proceedings of the AAS/AIAA Astrodynamics Specialists Conference, Snowbird, USA, 2018: AAS 18–289.
  28. Muralidharan, V., Howell, K. C. Departure and trajectory design applications using stretching directions. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Big Sky, USA, 2021: AAS 21–612.
  29. Riley, K. F., Hobson, M. P., Bence, S. J. Mathematical Methods for Physics and Engineering: A Comprehensive Guide, 3rd edn. Cambridge: Cambridge University Press, 2002.
    Book MATH Google Scholar
  30. Howell, K. C., Kakoi, M. Transfers between the Earth—Moon and Sun—Earth systems using manifolds and transit orbits. Acta Astronautica, 2006, 59(1–5): 367–380.
    Article Google Scholar
  31. Howell, K. C., Beckman, M., Patterson, C., Folta, D. Representations of invariant manifolds for applications in three-body systems. The Journal of the Astronautical Sciences, 2006, 54(1): 69–93.
    Article MathSciNet Google Scholar
  32. Haapala, A. F. Trajectory design using periapse maps and invariant manifolds. M.S. Thesis. West Lafayette, USA: Purdue University, 2010.
    Google Scholar
  33. Stuart, J., Ozimek, M., Howell, K. Optimal, low-thrust, path-constrained transfers between libration point orbits using invariant manifolds. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Toronto, Canada, 2010: AIAA 2010–7831.
  34. Soldini, S., Colombo, C., Walker, S. J. Solar radiation pressure end-of-life disposal for Libration-point orbits in the elliptic restricted three-body problem. In: Proceedings of the 25th AAS/AIAA Space Flight Mechanics Meeting, Williamsburg, USA, 2015.
  35. Olikara, Z., Gómez Muntané, G., Masdemont Soler, J. End-of-life disposal of libration point orbit spacecraft. In: Proceedings of the 64th International Astronautical Congress, Beijing, China, 2013: 1–13.
  36. Davis, D. C., Boudad, K. K., Phillips, S. M., Howell, K. C. Disposal, deployment, and debris in near rectilinear halo orbits. In: Proceedings of the 29th AAS/AIAA Space Flight Mechanics Meeting, Ka’anapali, USA, 2019: AAS 19–466.
  37. Ward, M. O. A taxonomy of glyph placement strategies for multidimensional data visualization. Information Visualization, 2002, 1(3–4): 194–210.
    Article Google Scholar
  38. Haapala, A. F., Howell, K. C. Representations of higher-dimensional Poincaré maps with applications to spacecraft trajectory design. Acta Astronautica, 2014, 96: 23–41.
    Article Google Scholar
  39. Prado Pino, B. J. Energy-informed strategies for low-thrust trajectory design in cislunar space. Ph.D. Dissertation. West Lafayette, USA: Purdue University, 2020.
    Google Scholar
  40. Guzzetti, D., Bosanac, N., Haapala, A., Howell, K. C., Folta, D. C. Rapid trajectory design in the Earth–Moon ephemeris system via an interactive catalog of periodic and quasi-periodic orbits. Acta Astronautica, 2016, 126: 439–455.
    Article Google Scholar
  41. Pritchett R. E. Strategies for low-thrust transfer design based on direct collocation techniques. Ph.D. Dissertation. West Lafayette, USA: Purdue University Purdue University, 2020.
    Google Scholar
  42. Lu, L., Li, H. Y., Zhou, W. M., Liu, J. H. Design and analysis of a direct transfer trajectory from a near rectilinear halo orbit to a low lunar orbit. Advances in Space Research, 2021, 67(3): 1143–1154.
    Article Google Scholar
  43. Rozek, M., Ogawa, H., Ueda, S., Ikenaga, T. Multi-objective optimisation of NRHO-LLO orbit transfer via surrogate-assisted evolutionary algorithms. In: Proceedings of the 27th International Symposium on Space Flight Dynamics, 2019: 1001–1007.
  44. Thangavelu, C. Transfers between near rectilinear halo orbits and low lunar orbits. M.S. Thesis. Boulder, USA: University of Colorado Boulder, 2019.
    Google Scholar

Download references