Ceramide as an Activator Lipid of Cathepsin D (original) (raw)
References
Adam-Klages, S., Adam, D., Wiegmann, K., Struve, S., Kolanus, W,, Schneider-Mergener, J., and Krönke, M., 1996, FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell, 86: 937–947. CASPubMed Google Scholar
Beyer, B.M., and Dunn, B.M., 1996) Self-activation of recombinant human lysosomal procathepsin D at a newly engineeredcleavage junction, “short” pseudocathepsin D. J. Biol. Chem.271: 15590–15596 ArticleCASPubMed Google Scholar
Cifone, M.G., De Maria, R., Roncaioli, P., Rippo, M.R., Azuma, M., Lanier, L.L., Santoni, A., and Testi, R., 1995, Apoptotic signaling through CD95 (Fas/APO-1) activates an acidic sphingomyelinase. J. Exp. Med.177: 1547–1552. Google Scholar
Cosset, F.-L., Takeuchi, Y., Battini, J.-L., Weiss, R.A., and Collins, M.K.L., 1995, High-titer packaging cells producing recombinant retroviruses resistant to human serum. J. Virol.69: 7430–7436. CASPubMed Google Scholar
Deiss, L.P., Galinka, H., Berissi, H., Cohen, O., and Kimchi, A., 1996, Cathepsin D protease mediates programmed cell death induced by interferon-γFas/APO-1 and TNF-α EMBO J.15: 3861–3870. CASPubMed Google Scholar
De Maria, R., Rippo, M.R., Schuchmann, E.H., and Testi, R., 1998, Acidic sphingomyelinase (ASM) is necessary for FAS-induced GD3 ganglioside accumulation and efficient apoptosis in lymphoid cells. J. Exp. Med.187: 897–902. PubMed Google Scholar
Diment, S., Martin, K.L., and Stahl, P.O., 1989, Cleavage of parathyroid hormone in macrophage endosomes illustrates a novel pathway for intracellular processing of proteins. J. Biol Chem.264: 13403–13406. CASPubMed Google Scholar
Faust, P.L., Kornfeld, S., and Chirgwin, J.M., 1985, Cloning and sequence analysis of cDNA for human cathepsin D. Proc. Natl. Acad. Sci. USA82: 4910–4914. CASPubMed Google Scholar
Gieselmann, V., Pohlmann, R., Hasilik, A., and von Figura, K, 1983, Biosynthesis and transport of cathepsin D in cultured human fibroblasts. J. Cell Biol., 97: 1–5. ArticleCASPubMed Google Scholar
Haimowitz-Friedmann, A., Cordon-Cardo, C., Bayoumy, S., Garzotto, M., McLouglin, M., Gallily, R., Edwards III, C.K., Schuchman, E.H., Fuks, Z., and Kolesnick, R., 1997, Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J. Exp. Med.186: 1831–1841. Google Scholar
Heinrich, M., Wickel, M., Schneider-Brachert, W., Sandberg, C., Gahr, J., Schwandner, R., Weber, T., Brunner, J., Saftig, P., Peters, C., Krönke, M., and Schütze, S., 1999, Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J.18: 5252–5263. ArticleCASPubMed Google Scholar
Herr, I., Wilhelm, D., Böhler, T., Angel, P., and Debatin, K.-M., 1997, Actvation of CD95 (APO-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis. EMBO J.16: 6200–6208. ArticleCASPubMed Google Scholar
Kreder, D., Krut, O., Adam-Klages, S., Wiegmann, K., Scherer, G., Plitz, T., Jensen, J.-M., Proksch, E., Steinmann, J., Pfeffer, K., and Krönke, M., 1999, Impaired neutral sphingomyelinase activation and cutaneous barrier repair in FAN-deficient mice. EMBO J.18: 2472–2479. ArticleCASPubMed Google Scholar
Krönke, M., 1997, The mode of ceramide action: the alkyl chain protrusion model. Cytokine Growth Factor Rev.8: 103–107. PubMed Google Scholar
Liu, P., and Anderson G.G.W., 1995, Compartmentalized production of ceramide at the cell surface. J. Biol. Chem.270: 27179–27185. CASPubMed Google Scholar
Monney, L., Olivier, R., Otter, I., Jansen, B., Poirier, G.G., and Borner, C., 1998, Role of an acidic compartment in tumor necrosis factor alpha-induced production of ceramide, activation of caspase-3 and apoptosis. Eur. J. Biochem.251: 295–303. ArticleCASPubMed Google Scholar
Ohsawa, Y., Isahara, K., Kanamori, S., Shibata, M., Kametaka, S., Gotow, T., Watanabe, T., Kominami, E., and Uchiyama, Y., 1999, An ultrastructural and immunohistochemica study of PC 12 cells during apoptosis induced by serum depriviation with special reference to autophagy and lysosomal cathepsins. Arch. Histol., Cytol.61: 395–403. Google Scholar
Perry, D. K., and Hannun, Y. A., 1998, The role of ceramide in cell signaling. Biochim. Biophhys. Ada1436: 233–243. CAS Google Scholar
Rijnboutt, S., Stoorvogel, W., Geuze, H., Strous, G.J., 1992, Identification of subcellular compartments involved in biosynthetic processing of cathepsin D. J. Biol. Chem.267: 15665–15672. CASPubMed Google Scholar
Saftig, P., Hetman, M., Schmahl, W., Weber, K., Heine, L., Mossmann, H., Köster, A., Hess, B., Evers, M., von Figura, K., and Peters, C., 1995, Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atropy of the intestinal mucosa and profound destruction of lymphoid cells. EMBO J.14: 3599–3608. CASPubMed Google Scholar
Santana, P., Pena, L.A., Haimovitz-Friedmann, A., Martin, S., Green, D., Me Loughlin, M., Cordon-Cardo, C., Schuchmann, E. H., Fuks, Z., and Kolesnick, R., 1996, Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell86: 189–199. ArticleCASPubMed Google Scholar
Schütze, S., Potthoff, K., Machleidt, T., Berkovic, D., Wiegmann, K., and Krönke, M., 1992, TNF activates NF-kBby phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell71: 765–776. PubMed Google Scholar
Schütze, S., Machleidt, T., Adam, D., Schwandner, R., Wiegmann, K., Kruse, M.-L., Heinrich, M., Wickel, M., and Krönke, M., 1999, Inhibition of receptor internalization by monodansylcadaverine selectively blocks p55 Tumor Necrosis Factorreceptor death domain signaling. J. Biol. Chem.274: 10203–10212. PubMed Google Scholar
Schütze, S., Wickel, M., Winoto-Morbach, S., Fleinrich, M., Weber, T., Brunner, J., and Krönke, M., 1999, Use of affinity chromatography and TID-ceramaide photoaffinity labeling for the detection of ceramide-binding proteins. Methods in Enzymology in press Google Scholar
Schwandner, R., Wiegmann, K., Bernado, K., Kreder, D, and Krönke, M.., 1998, TNF Receptor death domain-associated proteins TRADD and FADD signal acivation of acid sphingomyelinase. J. Biol. Chem.273: 5916–5922. ArticleCASPubMed Google Scholar
Spiegel, S., and Merrill, A. H. Jr., 1996, Sphingolipid metabolism and growth regulation. FASEB J.10: 1388–1397. CASPubMed Google Scholar
Shibata, M., Kanamori, S., Isahara, K., Ohsawa, Y., Konishi, A., Kametaka, S., Watanabe, T., Ebisu, S., Ishido, K., Kominami, E., and Uchiyama, Y., 1998, Participation of cathepsin D and B in apoptosis of PC 12 cells following serum depriviation. Biochem. Biophys. Res. Commun.251: 199–203. ArticleCASPubMed Google Scholar
van Echten-Deckert, G., Klein, A., Linke, T., Heinemann, T., Weisgerber, J., and Sandhoff, K., 1997, Turnover of endogenous ceramide in cultured normal and Farber fibroblasts. J. Lipid Res.38: 2569–2579. PubMed Google Scholar
Weber, T., and Brunner, J., 1995, 2-(Tributylstannyl)-4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzyl alcohol: A building block for photolabeling and cross-linking reagents of very high specific radioactivity. J. Am.. Chem. Soc.117: 3084–3095 ArticleCAS Google Scholar
Wickel, M., Heinrich, M., Weber, T., Brunner, J., Krönke, M., and Schütze, S., 1999, Identification of intracellular ceramide target proteins by affinity chromaatography and TID-ceramide photoaffinity labeling. Biochem.. Soc. Transactions27: 393–400. CAS Google Scholar
Wiegmann, K., Schütze, S., Machleidt, T., Witte, D., and Krönke, M., 1994, Functional dichotomy of neutral and acidic sphingomyelinase in tumor necrosis factor signaling. Cell78: 1005–1015. ArticleCASPubMed Google Scholar
Wiegmann, K, Schwandner, R., Krut, O., Yeh, W.-C., Mak, T.W., and Krönke, M., 1999, Requirement of FADD for Tumor Necrosis Factor-induced activation of acid sphingomyelinase. J. Biol. Chem.274: 5267–2570. ArticleCASPubMed Google Scholar
Wu, S., H., Saftig, P., Peters, C., and El-Deiry, W., 1998, Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity. Oncogene16: 2177–2183. CASPubMed Google Scholar