Structure and function of eukaryotic mono-ADP-ribosyltransferases (original) (raw)
References
Abbracchio MP, Cattabeni F, Di Giulio AM, Finco C, Paoletti AM, Tenconi B, Gorio A (1991) Early alteration of Gi/Go protein-dependent transductional processes in the retina of diabetic animals. J Neurosci Res 29:196–200 Google Scholar
Aktories K (1994) Clostridial ADP-ribosylating toxins: effects on ATP and GTP-binding proteins. Mol Cell Biochem 138:167–176 Google Scholar
Aktories K, Barmann M, Ohishi I, Tsuyama S, Jakobs KG, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392 Google Scholar
Allured VS, Collier RJ, Carroll SF, McKay DB (1986) Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution. Proc Natl Acad Sci USA 83:1320–1324 Google Scholar
Alvarez-Gonzales R, Pacheco-Rodriguez G, Mendoza-Alvarez H (1994) Enzymology of ADP-ribose polymer synthesis. Mol Cell Biochem 138:33–57 Google Scholar
Antoine R, Locht C (1994) The NAD-glycohydrolase activity of the pertussis toxin S1 subunit: involvement of the catalytic His-35 residue. J Biol Chem 269:6450–6457 Google Scholar
Antoine R, Tallett A, van Heyningen S, Locht C (1993) Evidence for a catalytic role of glutamic acid 129 in the NAD-glycohydrolase activity of the pertussis toxin S1 subunit. J Biol Chem 268:24149–24155 Google Scholar
Banasik M, Ueda K (1994) Inhibitors and activators of ADP-ribosylation reactions. Mol Cell Biochem 138:185–197 Google Scholar
Banasik M, Komura H, Shimoyama M, Ueda K (1992) Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. J Biol Chem 267:1569–1575 Google Scholar
Barbieri JT, Mende-Mueller LM, Rappuoli R, Collier RJ (1989) Photolabeling of Glu-129 of the S1 subunit of pertussis toxin with NAD. Infect Immun 57:3549–3554 Google Scholar
Bennett MJ, Eisenberg D (1995) Refined structure of monomeric diphtheria toxin at 2.3 Angstrom resolution. Protein Sci 3:1464–1475 Google Scholar
Blanke SR, Huang K, Wilson BA, Papini E, Covacci A, Collier RJ (1994a) Active-site mutations of diphtheria toxin catalytic domain: role of histidine-21 in nicotinamide adenine dinucleotide binding and ADP-ribosylation of elongation factor 2. Biochemistry 33:5155–5161 Google Scholar
Blanke SR, Huang K, Collier RJ (1994b) Active-site mutations of diphtheria toxin: role of tyrosine-65 in NAD binding and ADP-ribosylation. Biochem 33:15494–15500 Google Scholar
Bohmer J, Jung M, Sehr P, Fritz G, Popoff M, Just I, Aktories K (1996) Active site mutation of the C3-like ADP-ribosyltransferase from Clostridium limosum — analysis of glutamic acid 174. Biochemistry 35:282–289 Google Scholar
Braun U, Habermann B, Just I, Aktories K, Vandekerckhove J (1989) Purification of the 22-kDa protein substrate of botulinum ADP-ribosyltransferase C3 from porcine brain cytosol and its characterization as a GTP-binding protein highly homologous to the rho gene product. FEBS Lett 243:70–76 Google Scholar
Burnette WN, Cieplak W, Mar VL, Kaljot KT, Sato H, Keith JM (1988) Pertussis toxin S1 mutant with reduced enzyme activity and a conserved protective epitope. Science 242:72–74 Google Scholar
Burnette WN, Mar VL, Platler BW, Schlotterbeck JD, McGinley MD, Stoney KS, Rohde MF, Kaslow HR (1991) Site-specific mutagenesis of the catalytic subunit of cholera toxin: substitution lysine for arginine 7 causes loss of activity. Infect Immun 59:4266–4270 Google Scholar
Burstein D, Mordes JP, Greiner DL, Stein D, Nakamura N, Handler ES, Rossini AA (1989) Prevention of diabetes in BB/Wor rat by single transfusion of spleen cells. Parameters that affect degree of protection. Diabetes 38:24–30 Google Scholar
Carroll SF, Collier RJ (1987) Active site of Pseudomonas aeruginosa exotoxin A. Glutamic acid 553 is photolabeled by NAD and shows functional homology with glutamic acid 148 of diphtheria toxin. J Biol Chem 262:8707–8711 Google Scholar
Carroll SF, Collier RJ (1988) Amino acid sequence homology between the enzymic domains of diphtheria toxin and Pseudomonas aeruginosa exotoxin A. Mol Microbiol 2:293–296 Google Scholar
Carroll SF, McCloskey JA, Crain PF, Oppenheimer NJ, Marschner TM, Collier RJ (1985) Photoaffinity labeling of diphtheria toxin fragment A with NAD: structure of the photoproduct at position 148. Proc Natl Acad Sci USA 82:7237–7241 Google Scholar
Chang Y-C, Soman G, Graves DJ (1986) Identification of an enzymatic activity that hydrolyzes protein-bound ADP-ribose in skeletal muscle. Biochem Biophys Res Commun 139:932–939 Google Scholar
Chao D, Severson DL, Zwiers H, Hollenberg MD (1994) Radiolabelling of bovine myristoylated alanine-rich protein kinase C substrate (MARKS) in an ADP-ribosylation reaction. Biochem Cell Biol 72:391–396 Google Scholar
Choe S, Bennett MJ, Fujii G, Curmi PMG, Kantardjieff KA, Collier RJ, Eisenberg D (1992) The crystal structure of diphtheria toxin. Nature 357:216–222 Google Scholar
Cieplak W Jr, Mead DJ, Messer RJ, Grant CCR (1995) Site-directed mutagenic alteration of potential active-site residues of the A subunit of Escherichia coli heat-labile enterotoxin. J Biol Chem 270:30545–30550 Google Scholar
Clancy R, Leszczynska J, Amin A, Levartovsky D, Abramson SB (1995) Nitric oxide stimulates ADP-ribosylation of actin in association with the inhibition of actin polymerization in human neutrophils. J Leukoc Biol 58:196–202 Google Scholar
Coburn J, Kane AV, Feig L, Gill DM (1991) Pseudomonas aeruginosa exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity. J Biol Chem 266:6438–6446 Google Scholar
Coggins PF, McLean K, Nagy A, Zwiers H (1993a) ADP-ribosylation of the neuronal phosphoprotein B-50/GAP-43. J Neurochem 60:368–371 Google Scholar
Coggins PJ, McLean K, Zwiers H (1993b) Neurogranin, a B-50/GAP-43-immunoreactive C-kinase substrate (BICKS), is ADP-ribosylated. FEBS Lett 335:109–113 Google Scholar
Collier RJ (1990) Diphtheria toxin: structure and function of a cytocidal protein. In: Moss J, Vaughan M (eds) ADP-ribosylating toxins and G proteins: insights into signal transduction. American Society for Microbiology, Washington DC, pp 3–19 Google Scholar
Davis T, Shall S (1995) Sequence of a chicken erythroblast mono(ADP-ribosyl)transferase-encoding gene and its upstream region. Gene 164:371–372 Google Scholar
De Matteis MA, Di Girolamo M, Colanzi A, Pallas M, De Tullio G, McDonald LJ, Moss J, Santini G, Bannykh S, Corda D, Luini A (1994) Stimulation of endogenous ADP-ribosylation by brefeldin A. Proc Natl Acad Sci USA 91:1114–1118 Google Scholar
Di Girolamo M, Silletta MG, De Matteis MA, Braca A, Colanzi A, Pawlak D, Rasenick MM, Luini A, Corda D (1995) Evidence that the 50-kDa substrate of brefeldin A-dependent ADP-ribosylation binds GTP and is modulated by the G-protein βγ subunit complex. Proc Natl Acad Sci USA 92:7065–7069 Google Scholar
Dimmeler S, Lottspeich F, Brune B (1992) Nitric oxide causes ADP-ribosylation and inhibition of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 267:16771–16774 Google Scholar
Domenighini M, Montecucco C, Ripka WC, Rappuoli R (1991) Computer modelling of the NAD binding site of ADP-ribosylating toxins: active-site structure and mechanism of NAD binding. Mol Microbiol 5:23–31 Google Scholar
Domenighini M, Magagnoli C, Pizza M, Rappuoli R (1994) Common features of the NAD-binding and catalytic site of ADP-ribosylating toxins. Mol Microbiol 14:41–50 Google Scholar
Donadoni ML, Gavezzotti R, Borella F, De Giulio AM, Gorio A (1995) Experimental diabetic neuropathy. Inhibition of protein mono-ADP-ribosylation prevents reduction of substance P axonal transport. J Pharmacol Exp Ther 274:570–576 Google Scholar
Donnelly LE, Boyd RS, MacDermot J (1992) Gsα is a substrate for mono(ADP-ribosyl)transferase of NG108-15 cells. ADP-ribosylation regulates Gsα activity and abundance. Biochem J 288:331–336 Google Scholar
Douglas CM, Collier RJ (1987) Exotoxin A of Pseudomonas aeruginosa: substitution of glutamic acid-553 with aspartic acid drastically reduces toxicity and enzymic activity. Infect Immun 169:4967–4971 Google Scholar
Doukas J, Mordes JP (1993) T lymphocytes capable of activating endothelial cells in vitro are present in rats with autoimmune diabetes. J Immunol 150:1036–1046 Google Scholar
Duman RS, Winston SM, Clark JA, Nestler EJ (1990) Corticosterone regulates the expression of ADP-ribosylation factor messenger RNA and protein in rat cerebral cortex. J Neurochem 55:1813–1816 Google Scholar
Duman RS, Terwilliger RZ, Nestler EJ (1991) Endogenous ADP-ribosylation in brain: initial characterization of substrate proteins. J Neurochem 57:2124–2132 Google Scholar
Ehret-Hilberer S, Nullans G, Aunis D, Virmaux N (1992) Mono-ADP-ribosylation of transducin catalyzed by rod outer segment extract. FEBS Lett 309:394–398 Google Scholar
Fangmann J, Schwinzer M, Winkler M, Wonigeit K (1990) Expression of RT6 alloantigens and the T-cell receptor on intestinal intraepithelial lymphocytes of the rat. Transplant Proc 22:2543–2544 Google Scholar
Feldman AM, Levine MA, Baughman KL, Van Dop C (1987) NAD+-mediated stimulation of adenylate cyclase in cardiac membranes. Biochem Biophys Res Commun 142:631–637 Google Scholar
Finco C, Abbracchio MP, Malosio ML, Cattabeni F, Di Giulio AM, Paternieri B, Mantegazza P, Gorio A (1992) Diabetes-induced alteration of central nervous system G proteins. ADP-ribosylation, immunoreactivity, and gene-expression studies in rat striatum. Mol Chem Neuropathol 17:259–272 Google Scholar
Gerber LD, Kodukula K, Udenfriend S (1992) Phosphatidylinositol glycan (PI-G) anchored membrane proteins. Amino acid requirements adjacent to the site of cleavage and PI-G attachment in the COOH-terminal signal peptide. J Biol Chem 267:12168–12173 Google Scholar
Godeau F, Belin D, Koide SS (1984) Mono(adenosine diphosphate ribosyl) transferase in Xenopus tissues. Direct demonstration by a zymographic localization in sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem 137:287–296 Google Scholar
Gorio A, Donadoni ML, Di Giulio AM (1995) Nitric oxide-sensitive protein ADP-ribosylation is altered in rat diabetic neuropathy. J Neurosci Res 40:420–426 Google Scholar
Greiner DL, Handler ES, Nakano K, Mordes JP, Rossini AA (1986) Absence of the RT-6 T cell subset in diabetes-prone BB/W rats. J Immunol 136:148–151 Google Scholar
Greiner DL, Mordes JP, Handler ES, Angelillo M, Nakamura N, Rossini AA (1987) Depletion of RT6.1+ T lymphocytes induces diabetes in resistant Biobreeding/Worcestter (BB/W) rats. J Exp Med 166:461–475 Google Scholar
Grimaldi JC, Balasubramanian S, Kabra NH, Shanafelt A, Bazan JF, Zurawski G, Howard MC (1995) CD38-mediated ribosylation of proteins. J Immunol 155:811–817 Google Scholar
Haag F, Koch F, Thiele H-G (1990) Polymorphism between not T-cell alloantigens RT6.1 and RT6.2 is based on multiple amino acid substitutions. Transplant Proc 22:2541–2542 Google Scholar
Haag F, Nolte F, Hollmann C, Thiele H-C (1993) Analysis of the gene for the rat T-cell alloantigen RT6: evidence for alternative splicing in the 5′ region. Transplant Proc 25:2784–2785 Google Scholar
Haag F, Koch-Nolte F, Kuhl M, Lornezen S, Thiele H-G (1994) Premature stop codons inactivate the RT6 genes of the human and chimpanzee species. J Mol Biol 243:537–546 Google Scholar
Haag F, Andresen V, Karsten S, Koch-Nolte F, Thiele H-G (1995) Both allelic forms of the rat T cell differentiation marker RT6 display nicotinamide adenine dinucleotide (NAD)-glycohydrolase activity, yet only RT6.2 is capable of automodification upon incubation with NAD. Eur J Immunol 25:2355–2361 Google Scholar
Han XY, Galloway DR (1995) Active site mutations of Pseudomonas aeruginosa exotoxin A. Analysis of the His440 residue. J Biol Chem 270:679–684 Google Scholar
Hawkins DJ, Browning ET (1982) Tubulin adenosine diphosphate ribosylation is catalyzed by cholera toxin. Biochem 21:4474–4479 Google Scholar
Howard MC, Grimaldi JC Bazan JF, Lund FE, Santos-Argumedo L, Parkhouse RME, Walseth TF, Lee HC (1993) Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262:1056–1059 Google Scholar
Jacobson MK, Loflin PT, Aboul-Ela N, Mingmuang M, Moss J, Jacobson EL (1990) Modification of plasma membrane protein cysteine residues by ADP-ribose in vivo. J Biol Chem 265:10825–10828 Google Scholar
Johnson VG, Nicholls P (1994) Histidine-21 does not play a major role in diphtheria toxin catalysis. J Biol Chem 269:4349–4354 Google Scholar
Jung M, Just I, van Damme J, Vandekerckhove J, Aktories K (1993) NAD-binding site of the C3-like ADP-ribosyltransferase from Clostridium limosum. J Biol Chem 268:23215–23218 Google Scholar
Just I, Wollenberg P, Moss J, Aktories K (1994) Cysteine-specific ADP-ribosylation of actin. Eur J Biochem 221:1047–1054 Google Scholar
Just I, Sehr P, Jung M, van Damme J, Puype M, Vandekerckhove J, Moss J, Aktories K (1995a) ADP-ribosyltransferase type A from turkey erythrocytes modifies actin at arg-95 and arg-372. Biochemistry 34:326–333 Google Scholar
Just I, Selzer J, Jung M, van Damme J, Vandekerckhove J, Aktories K (1995b) Rho-ADP-ribosylating exoenzyme from Bacillus cereus. Purification, characterization, and identification of the NAD-binding site. Biochem 34:334–340 Google Scholar
Kaslow HR, Schlotterbeck JD, Mar VL, Burnette NW (1989) Alkylation of cysteine 41, but not cysteine 200, decreases the ADP-ribosyltransferase activity of the S1 subunit of pertussis toxin. J Biol Chem 264:6386–6390 Google Scholar
Kessler SP, Galloway DR (1992) Pseudomonas aeruginosa Exotoxin A interaction with eucaryotic elongation factor 2. Role of the His426 residue. J Biol Chem 267:19107–19111 Google Scholar
Kharadia SV, Huiatt TW, Huang H-Y, Peterson JE, Graves DJ (1992) Effect of an arginine-specific ADP-ribosyltransferase inhibitor on differentiation of embryonic chick skeletal muscle cells in culture. Exp Cell Res 201:33–42 Google Scholar
Klausner RD, Donaldson JG, Lippincott-Schwartz J (1992) Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol 116:1071–1080 Google Scholar
Klebl BM, Matsushita S, Pette D (1994) Localization of an arginine-specific mono-ADP-ribosyltransferase in skeletal muscle sarcolemma and transverse tubules. FEBS Lett 342:66–70 Google Scholar
Knight DA, Finck-Barbancon V, Kulich SM, Barbieri JT (1995) Functional domains of Pseudomonas aeruginosa exoenzyme S. Infect Immunol 63:3182–3186 Google Scholar
Koch F, Kashan A, Thiele H-G (1988) The rat T-cell differentiation marker RT6.1 is more polymorphic than its alloantigenic counterpart RT6.2. Immunology 65:259–265 Google Scholar
Koch F, Haag F, Kashan A, Thiele H-G (1990a) Primary structure of rat RT6.2, a non-glycosylated phosphatidylinositol-linked surface marker of postthymic T cells. Proc Natl Acad Sci USA 87:964–967 Google Scholar
Koch F, Haag F, Thiele H-G (1990b) Nucleotide and deduced amino acid sequence for the mouse homologue of the rat T-cell differentiation marker RT6. Nucleic Acids Res 18:3636 Google Scholar
Koch-Nolte F, Haag F, Kuhl M, van Heyningen V, Hoovers J, Grzeschik K-H, Singh S, Thiele H-G (1993) Assignment of the human RT6 gene to 11q13 by PCR screening of somatic cell hybrids and in situ hybridization. Genomics 18:404–406 Google Scholar
Koch-Nolte F, Hollmann C, Kuhl M, Haag F, Prochazka M, Leiter E, Thiele H-G (1995a) Molecular polymorphism in the Rt6 genes of laboratory mice correlates with the allotypes of the H1 minor histocompatability system. Immunogenetics 41:152–155 Google Scholar
Koch-Nolte F, Klein J, Hollmann C, Kuhl M, Haag F, Gaskins HR, Leiter E, Thiele H-G (1995b) Defects in the structure and expression of the genes for the T cell marker RT6 in NZW and (NZW X NZW)F1 mice. Internatl Immunol 7:883–890 Google Scholar
Koch-Nolte F, Petersen D, Balasubramanian S, Haag F, Kahlke D, Willer T, Kastelein R, Bazan F, Thiele H-G (1996) Mouse T cell membrane proteins Rt6-1 and Rt6-2 are arginine/protein mono (ADP-ribosyl) transferases and share secondary structure motifs with ADP-ribosylating bacterial toxins. J Biol Chem 271:7686–7693 Google Scholar
Koch T, Ruger W (1994) The ADP-ribosyltransferases (gpAlt) of bacteriophages T2, T4, and T6: sequencing of the genes and comparison of their products. Virology 203:294–298 Google Scholar
Kots AY, Skurat AV, Sergienko EA, Bulargina TV, Severin ES (1992) Nitroprusside stimulates the cysteine specific mono (ADP-ribosylation) of glyceraldehyde-3-phosphate dehydrogenase from human erythrocytes. FEBS Lett 300:9–12 Google Scholar
Kulich SM, Yahr TL, Mende-Mueller LM, Barbieri JT, Frank DW (1994) Cloning the structural gene for the 49-kDa form of exoenzyme S (exoS) from Pseudomonas aeruginosa strain 388. J Biol Chem 269:10431–10437 Google Scholar
Lee HC, Walseth TF, Bratt GT, Hayes RN, Clapper DL (1989) Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J Biol Chem 264:1608–1611 Google Scholar
Liu Y, Kahn ML (1995) ADP-ribosylation of Rhizobium meliloti glutamine synthetase III in vivo. J Biol Chem 270:1624–1628 Google Scholar
Lobet Y, Cluff CW, Cieplak W Jr (1991) Effect of site-directed mutagenic alterations on ADP-ribosyltransferase activity of the A subunit of Escherichia coli heat-labile enterotoxin. Infect Immun 59:2870–2879 Google Scholar
Ludden PW (1994) Reversible ADP-ribosylation as a mechanism of enzyme regulation in procaryotes. Mol Cell Biochem 138:123–129 Google Scholar
Maehama T, Nishina H, Katada T (1994) ADP-ribosylarginine glycohydrolase catalyzing the release of ADP-ribose from the cholera toxin-modified α-subunits of GTP-binding proteins. J Biochem 116:1134–1138 Google Scholar
Maehama T, Nishina H, Hoshino S, Kanaho Y, Katada T (1995) NAD+-dependent ADP-ribosylation of T lymphocyte alloantigen RT6.1 reversibly proceeding in intact rat lymphocytes. J Biol Chem 270:22747–22751 Google Scholar
Marsischky GT, Ikejima M, Suzuki H, Sugimura T, Esumi H, Miwa M, Collier RJ (1992) Directed mutagenesis of glutamic acid 988 of poly(ADP-ribose) polymerase. In: Poirier GG, Moreau P (eds) ADP-ribosylation reactions. Springer, Berlin Heidelberg New York, pp 47–52 Google Scholar
Matsuura R, Tanigawa Y, Tsuchiya M, Mishima K, Yoshimura Y, Shimoyama M (1988) ADP-ribosylation suppresses phosphorylation of the L-type pyruvate kinase. Biochem Biophys Acta 969:57–65 Google Scholar
Matsuyama S, Tsuyama S (1991) Mono-ADP-ribosylation in brain: purification and characterization of ADP-ribosyltransferases affecting actin from rat brain. J Neurochem 57:1380–1387 Google Scholar
McDonald LJ, Moss J (1993b) Stimulation by nitric oxide of a novel linkage of NAD to glyceraldehyde 3-phosphate dehydrogenase. Proc Natl Acad Sci USA 90:6238–6241 Google Scholar
McDonald LJ, Moss J (1994) Enzymatic and nonenzymatic ADP-ribosylation of cysteine. Mol Cell Biochem 138:221–226 Google Scholar
McDonald LJ, Wainschel LA, Oppenheimer NJ, Moss J (1992) Amino acid-specific ADP-ribosylation: structural characterization and chemical differentiation of ADP-ribose-cysteine adducts formed nonenzymatically and in a pertussis toxin-catalyzed reaction. Biochem 31:11881–11887 Google Scholar
McMahon KK, Piron KJ, Ha VT, Fullerton AT (1993) Developmental and biochemical characteristics of the cardiac membrane-bound arginine-specific mono-ADP-ribosyltransferase. Biochem J 293:789–793 Google Scholar
Merritt EA, Sarfaty S, Pizza M, Domenighini M, Rappuoli R, Hol WGJ (1995) Mutation of a buried residue causes loss of activity but no conformational change in the heat-labile enterotoxin of Escherichia coli. Struct Biol 2:269–272 Google Scholar
Mishima K, Tsuchiya M, Tanigawa Y, Yoshimura Y, Shimoyama M (1989) DNA-dependent mono(ADP-ribosyl)ation of p33, an acceptor protein in hen liver nuclei. Eur J Biochem 179:267–273 Google Scholar
Mishima K, Terashima M, Obara S, Yamada K, Imai K, Shimoyama M (1991) Arginine-specific ADP-ribosyltransferase and its acceptor protein p33 in chicken polymor-phonuclear cells: co-localization in the cell granules, partial characterization, and in situ mono(ADP-ribosyl)ation. J Biochem 110:388–394 Google Scholar
Mojcik CF, Greiner DL, Medlock ES, Komschlies KL, Goldschneider I (1988) Characterization of RT6 bearing rat lymphocytes. I. Ontogeny of the RT6+ subset. Cell Immunol 114:336–346 Google Scholar
Molina y Vedia L, Nolan RD, Lapetina EG (1989) The effect of iloprost on the ADP-ribosylation of Gsα (the α-subunit of Gs). Biochem J 261:841–845 Google Scholar
Moss J, Stanley SJ (1981a) Histone-dependent and histone-independent forms of an ADP-ribosyltransferase from human and turkey erythrocytes. Proc Natl Acad Sci USA 78:4809–4812 Google Scholar
Moss J, Stanley SJ (1981b) Amino acid-specific ADP-ribosylation. Identification of an arginine-dependent ADP-ribosyltransferase in rat liver. J Biol Chem 256:7830–7833 Google Scholar
Moss J, Vaughan M (1978) Isolation of an avian erythrocyte protein possessing ADP-ribosyltransferase activity and capable of activating adenylate cyclase. Proc Natl Acad Sci USA 75:3621–3624 Google Scholar
Moss J, Vaughan M (1988) ADP-ribosylation of guanyl nucleotide-binding proteins by bacterial toxins. Adv Enzymol 61:303–379 Google Scholar
Moss J, Vaughan M (eds) (1990) ADP-ribosylating toxins and G proteins: insights into signal transduction. American Society for Microbiology, Washington DC Google Scholar
Moss J, Vaughan M (1995) Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport process. J Biol Chem 270:12327–12330 Google Scholar
Moss J, Stanley SJ, Oppenheimer NJ (1979) Substrate specificity and partial purification of a stereospecific NAD-and guanidine-dependent ADP-ribosyltransferase from avian erythrocytes. J Biol Chem 254:8891–8894 Google Scholar
Moss J, Stanley SJ, Watkins PA (1980) Isolation and properties of an NAD-and guanidine-dependent ADP-ribosyltransferase from turkey erythrocytes. J Biol Chem 255:5838–5840 Google Scholar
Moss J, Stanley SJ, Osborne JC Jr (1981) Effect of self-association on activity of an ADP-ribosyltransferase from turkey erythrocytes. J Biol Chem 256:11452–11456 Google Scholar
Moss J, Stanley SJ, Osborne JC Jr (1982) Activation of NAD:arginine ADP-ribosyltransferase by histone. J Biol Chem 257:1660–1663 Google Scholar
Moss J, Osborne JC Jr, Stanley SJ (1984a) Activation of an erythrocyte NAD:arginine ADP-ribosyltransferase by lysolecithin and nonionic and zwitterionic detergents. Biochemistry 23:1353–1357 Google Scholar
Moss J, Watkins PA, Stanley SJ, Purnell MR, Kidwell WR (1984b) Inactivation of glutamine synthetases by an NAD:arginine ADP-ribosyltransferase. J Biol Chem 259:5100–5104 Google Scholar
Moss J, Jacobson MK, Stanley SJ (1985) Reversibility of arginine-specific mono(ADP-ribosyl)ation: identification in erythrocytes of an ADP-ribose-l-arginine cleavage enzyme. Proc Natl Acad Sci USA 82:5603–5607 Google Scholar
Moss J, Oppenheimer NJ, West RE Jr, Stanley SJ (1986) Amino acid specific ADP-ribosylation: substrate specificity of an ADP-ribosylarginine hydrolase from turkey erythrocytes. Biochemistry 25:5408–5414 Google Scholar
Moss J, Tsai S-C, Adamik R, Chen H-C, Stanley SJ (1988) Purification and characterization of ADP-ribosylarginine hydrolase from turkey erythrocytes. Biochemistry 27:5819–5823 Google Scholar
Moss J, Stanley SJ, Levine RL (1990) Inactivation of bacterial glutamine synthetase by ADP-ribosylation. J Biol Chem 265:21056–21060 Google Scholar
Moss J, Stanley SJ, Nightingale MS, Murtagh JJ Jr, Monaco L, Mishima K, Chen H-C, Williamson KC, Tsai S-C (1992) Molecular and Immunological characterization of ADP-ribosylarginine hydrolases. J Biol Chem 267:10481–10488 Google Scholar
Moss J, Stanley SJ, Vaughan M, Tsuji T (1993) Interaction of ADP-ribosylation factor with Escherichia coli enterotoxin that contains an inactivation lysine 112 substitution. J Biol Chem 268:6383–6387 Google Scholar
Narumiya S, Sekine A, Fujiwara M (1988) Substrate for botulinum ADP-ribosyltransferase, Gb, has an amino acid sequence homologous to a putative rho gene product. J Biol Chem 263:17255–17257 Google Scholar
Nemoto Y, Namba T, Kozaki S, Narumiya S (1991) Clostridium botulinum C3 ADP-ribosyltransferase gene. Cloning sequencing, and expression of a functional protein in Escherichia coli. J Biol Chem 266:19312–19319 Google Scholar
Ness SA, Marknell A, Graf T (1989) The v-myb oncogene product binds to and activates the promyelocyte-specific mim-1 gene. Cell 59:1115–1125 Google Scholar
Nestler EJ, Terwilliger RZ, Duman RS (1995) Regulation of endogenous ADP-ribosylation by acute and chronic lithium in rat brain. J Neurochem 64:2319–2324 Google Scholar
Obara S, Yamada K, Yoshimura Y, Shimoyama M (1991) Evidence for the endogenous GTP-dependent ADP-ribosylation of the α-subunit of the stimulatory guanyl-nucleotide-binding protein concomitant with an increase in basal adenylyl cyclase activity in chicken spleen cell membrane. Eur J Biochem 200:75–80 Google Scholar
Okazaki IJ, Zolkiewska A, Nightingale MS, Moss J (1994) Immunological and structural conservation of mammalian skeletal muscle glycosylphosphatidylinositol-linked ADP-ribosyltransferases. Biochemistry 33:12828–12836 Google Scholar
Okazaki IJ, Kim H-J, McElvaney G, Lesma E, Moss J (1996a) Molecular characterization of a glycosylphosphatidylinositol-linked ADP-ribosyltransferase from lymphocytes. Blood, in press Google Scholar
Okazaki IJ, Kim H-J, Moss J (1996b) A novel membrane-bound lymphoxyte ADP-ribosyltransferase cloned from Yac-1 cells. J Biol Chem, in press Google Scholar
Oppenheimer NJ (1978) Structural determination and stereospecificity of the choleragen-catalyzed reaction of NAD+ with guanidines. J Biol Chem 253:4907–4910 Google Scholar
Osborne JC Jr, Stanley SJ, Moss J (1985) Kinetic mechanisms of two NAD:arginine ADP-ribosyltransferases: the soluble, salt-stimulated transferase from turkey erythrocytes and choleragen, a toxin from Vibrio cholera. Biochemistry 24:5235–5240 Google Scholar
Papini E, Schiavo G, Sandona D, Rappuoli R, Montecucco C (1989) Histidine 21 is at the NAD+ binding site of diphtheria toxin. J Biol Chem 264:12385–12388 Google Scholar
Papini E, Santucci A, Schiavo G, Domenighini M, Neri P, Rappuoli R, Montecucco R (1991) Tyr-65 is photolabelled by 8-azido adenine and 8-azido-adenosine at the NAD binding site of diphtheria toxin. J Biol Chem 266:2494–2498 Google Scholar
Pelham HRB (1991) Multiple targets for brefeldin A. Cell 67:449–451 Google Scholar
Peterson JE, Larew JS-A Graves DJ (1990) Purification and partial characterization of arginine-specific ADP-ribosyltransferase from skeletal muscle microsomal membranes. J Bio Chem 265:17062–17069 Google Scholar
Piron KJ, McMahon KK (1990) Localization and partial characterization of ADP-ribosylation products in hearts from adult and neonatal rats. Biochem J 270:591–597 Google Scholar
Pizza M, Bartoloni A, Prugnola A, Silvestri S, Rappuoli R (1988) Subunit S1 of pertussis toxin: mapping of the regions essential for ADP-ribosyltransferase activity. Proc Natl Acad Sci USA 85:7521–7525 Google Scholar
Pizza M, Domenighini M, Hol W, Giannelli V, Fontana MR, Giuliani MM, Magagnoli C, Peppoloni S, Manetti R, Rappuoli R (1994) Probing the structure-activity relationship of Escherichia coli LT-A by site-directed mutagenesis. Mol Microbiol 14:51–60 Google Scholar
Pozdnyakov N, Lloyd A, Reddy VN, Sitaramayya A (1993) Nitric oxide-regulated endogenous ADP-ribosylation of rod outer segment proteins. Biochem Biophys Res Commun 192:610–615 Google Scholar
Prochazka M, Leiter EH, Serreze DV, Coleman DL (1987) Three recessive loci required for insulin-dependent diabetes in nonobese diabetic mice. Science 237:286–289 Google Scholar
Prochazka M, Gaskins HR, Leiter EH, Koch-Nolte F, Haag F, Thiele H-G (1991) Chromosomal localization, DNA polymorphism, and expression of Rt-6, the mouse homologue of rat T-lymphocyte differentiation marker RT6. Immunogenetics 33:152–156 Google Scholar
Quist EE, Coyle DL, Vasan R, Satumitra N, Jacobson EL, Jacobson MK (1994) Modification of cardiac membrane adenylate cyclase activity and Gsα by NAD and endogenous ADP-ribosyltransferase. J Mol Cell Cardiol 26:251–160 Google Scholar
Raffaelli N, Scaife RM, Purich DL (1992) ADP-ribosylation of chicken red cell tubulin and inhibition of microtubule self-assembly in vitro by the NAD+-dependent avian ADP-ribosyltransferase. Biochem Biophys Res Commun 184:414–418 Google Scholar
Rankin PW, Jacobson EL, Benjamin RC, Moss J, Jacobson MK (1989) Quantitative studies of inhibitors of ADP-ribosylation in vitro and in vivo. J Biol Chem 264:4312–4317 Google Scholar
Rappuoli R, Pizza M (1991) Structure and evolutionary aspects of ADP-ribosylating toxins. In: Alouf JE, Freer JH (eds) Sourcebook of bacterial protein toxins. Academic, San Diego, pp 1–21 Google Scholar
Rigby M, Bortell R, Stevens LA, Moss J, Kanaitsuka T, Shigeta H, Mordes JP, Greiner DL, Rossini AA (1996) Rat RT6.2 and mouse Rt6 locus 1 are NAD:arginine ADP-ribosyltransferases with auto-ADP-ribosylation activity. J Immunol, 156:4259–4265 Google Scholar
Rosa JL, Perez JX, Ventura F, Tauler A, Gil J, Shimoyama M (1995) Role of the N-terminal region in covalent modification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: comparison of phosphorylation and ADP-ribosylation. Biochem J 309:119–125 Google Scholar
Rossini AA, Mordes JP, Greiner DL, Nakano K, Appel MC, Handler ES (1986) Spleen cell transfusion in the Bio-Breeding/Worcester rat. Prevention of diabetes, major histocompatability complex restriction, and long-term persistence of transfused cells. J Clin Invest 77:1399–1401 Google Scholar
Saito N, Guitart X, Hayward MD, Tallman JF, Duman RS, Nestler EJ (1989) Corticosterone differentially regulates the expression of Gsα and Giα messenger RNA and protein in rat cerebral cortex. Proc Natl Acad Sci USA 86:3906–3910 Google Scholar
Scaife RM, Wilson L, Purich DL (1992) Microtubule protein ADP-ribosylation in vitro leads to assembly inhibition and rapid depolymerization. Biochemistry 31:310–316 Google Scholar
Schering B, Barmann M, Chhatwal GS, Geipel U, Aktories K (1988) ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. Eur J Biochem 171:225–229 Google Scholar
Schuman EM, Meffert MK, Schulman H, Madison DV (1994) An ADP-ribosyltransferase as a potential target for nitric oxide action in hippocampal long-term potentiation. Proc Natl Acad Sci USA 91:11958–11962 Google Scholar
Sekine A, Fujiwara M, Narumiya S (1989) Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem 264:8602–8605 Google Scholar
Sheffler LA, Wink DA, Melilo G, Cox GW (1995) Characterization of nitric oxide-stimulated ADP-ribosylation of various proteins from the mouse macrophage cell line ANA-1 using sodium nitroprusside and the novel nitric oxide-donating compound diethlamine dinitric oxide. J Leukoc Biol 57:152–159 Google Scholar
Silman NJ, Carr NG, Mann NH (1995) ADP-ribosylation of glutamine synthetase in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 177:3527–3533 Google Scholar
Simonin F, Poch O, Delarue M, de Murcia G (1993) Identification of potential active-site residues in the human poly(ADP-ribose) polymerase. J Biol Chem 268:8529–8535 Google Scholar
Sixma TK, Pronk SE, Kalk KH, Wartna ES, van Zanten BAM, Witholt B, Hol WGJ (1991) Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 351:371–377 Google Scholar
Sixma TK, Kalk KH, van Zanten BAM, Dauter Z, Kingma J, Witholt B, Hol WGJ (1993) Refined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J Mol Biol 230:890–918 Google Scholar
Smith KP, Benjamin RC, Moss J, Jacobson MK (1985) Identification of enzymatic activities which process protein bound mono(ADP-ribose). Biochem Biophys Res Commun 126:136–142 Google Scholar
Soman G, Mickelson JR, Louis CF, Graves DJ (1984) NAD:guanidino group-specific mono-ADP-ribosyltransferase activity in skeletal muscle. Biochem Biophys Res Commun 120:973–980 Google Scholar
Soman G, Haregewoin A, Hom RC, Finberg RW (1991) Guanidine group specific ADP-ribosyltransferase in murine cells. Biochem Biophys Res Commun 176:301–308 Google Scholar
Song WK, Wang W, Foster RF, Bielser DA, Kaufamn SJ (1992) H-36-alpha 7 is a novel integrin alpha chain that is developmentally regulated during skeletal myogenesis. J Cell Biol 117:643–657 Google Scholar
Stein PE, Boodhoo A, Armstrong GD, Cockle SA, Klein MH, Read RJ (1994) The crystal structure of pertussis toxin. Structure 2:45–57 Google Scholar
Sternweis PC, Robishaw JD (1984) Isolation of two proteins with high affinity for guanine nucleotides from membrane of bovine brain. J Biol Chem 259:13806–13813 Google Scholar
Takada T, Iida K, Moss J (1993) Cloning and site-directed mutagenesis of human ADP-ribosylarginine hydrolase. J Biol Chem 268:17837–17843 Google Scholar
Takada T, Iida K, Moss J (1994) Expression of NAD glycohydrolase activity by rat mammary adenocarcinoma cells transformed with rat T cell alloantigen RT6.2. J Biol Chem 269:9420–9423 Google Scholar
Takada T, Iida K, Moss J (1995) Conservation of a common motif in enzymes catalyzing ADP-ribose transfer. J Biol Chem 270:541–544 Google Scholar
Takenaka S, Nakano Y, Tsuyama S (1994) Mono-ADP-ribosylation of microtubule-associated protein 2 that inhibits polymerization of rat brain microtubules. In: The 11th international symposium on ADP-ribosylation. DNA repair, signal transduction. Abstract no 56. Strasbourg-Bischenberg, France Google Scholar
Tamir A, Gill D (1988) ADP-ribosylation by cholera toxin of membranes derived from brain modifies the interaction of adenylate cyclase with guanine nucleotides and NaF. J Neurochem 50:1791–1797 Google Scholar
Tanigawa Y, Tsuchiya M, Imai Y, Shimoyama M (1983a) Mono(ADP-ribosyl)ation of hen liver nuclear proteins suppresses phosphorylation. Biochem Biophys Res Commun 113:135–141 Google Scholar
Tanigawa Y, Tsuchiya M, Imai Y, Shimoyama M (1983b) ADP-ribosylation regulates the phosphorylation of histones by the catalytic subunit of cyclic AMP-dependent protein kinase. FEBS Lett 160:217–220 Google Scholar
Tanigawa Y, Tsuchiya M, Imai Y, Shimoyama M (1984) ADP-ribosyltransferase from hen liver nuclei. J Biol Chem 259:2022–2029 Google Scholar
Tanuma S, Endo H (1990) Identification in human erythrocytes of mono(ADP-ribosyl) protein hydrolase that cleaves a mono(ADP-ribosyl) Gi linkage. FEBS Lett 261:381–384 Google Scholar
Tanuma S, Kawashima K, Endo H (1987) An NAD:cysteine ADP-ribosyltransferase is present in human erythrocytes. J Biochem 101:821–824 Google Scholar
Tanuma S, Kawashima K, Endo H (1988) Eukaryotic mono(ADP-ribosyl)transferase that ADP-ribosylates GTP-binding regulatory Gi protein. J Biol Chem 263:5485–5489 Google Scholar
Terashima M, Mishima K, Yamada K, Tsuchiya M, Wakutani T, Shimoyama M (1992) ADP-ribosylation of actins by arginine-specific ADP-ribosyltransferase purified from chicken heterophils. Eur J Biochem 204:305–311 Google Scholar
[Terashima M, Yamamori C, Shimoyama M (1995) ADP-ribosylation of Arg28 and Arg206 on the actin molecule by chicken arginine-specific ADP-ribosyltransferase. Eur J Biochem 231:242–249] Google Scholar
Thiele H-G, Koch F, Hamann A, Arndt R (1986) Biochemical characterization of the T-cell alloantigen RT6.2. Immunology 59:195–201 Google Scholar
Thiele H-G, Koch F, Kashan A (1987) Postnatal distribution profiles of Thy-1+ and RT6+ cells in peripheral lymph nodes of DA-rats. Transplant Proc 19:3157–3160 Google Scholar
Thiele H-G, Haag F, Nolte F (1993) Asymmetric expression of RT6.1 and RT6.2 alloantigens in (RT6a X RT6b)F1 rats is due to a pretranslational mechanism. Transplant Proc 25:2786–2788 Google Scholar
Tsai S-C, Adamik R, Moss J, Vaughan M, Manne V, Kung H-F (1985) Effects of phospholipids and ADP-ribosylation on GTP hydrolysis by _Escherichia coli_-synthesized Ha-_ras_-encoded p21. Proc Natl Acad Sci USA 82:8310–8314 Google Scholar
Tsai S-C, Adamik R, Haun RS, Moss J, Vaughan M (1993) Effects of brefeldin A and accessory proteins on association of ADP-ribosylation factors 1, 3, and 5 with Golgi. J Biol Chem 268:10820–10825 Google Scholar
Tsuchiya M, Tanigawa Y, Ushiroyama T, Matsuura R, Shimoyama M (1985) ADP-ribosylation of phosphorylase kinase and block of phosphate incorporation into the enzyme. Eur J Biochem 147:33–40 Google Scholar
Tsuchiya M, Hara N, Yamada K, Osago H, Shimoyama M (1994) Cloning and expression of cDNA for arginine-specific ADP-ribosyltransferase from chicken bone marrow cells. J Biol Chem 269:27451–27457 Google Scholar
Tsuchiya M, Osago H, Shimoyama M (1995) A newly identified GPI-anchored arginine-specific ADP-ribosyltransferase activity in chicken spleen. Biochem Biophys Res Commun 214:760–764 Google Scholar
Tsuji T, Inoue T, Miyama A, Okamoto K, Honda T, Miwatani T (1990) A single amino acid substitution in the A subunit of Escherichia coli enterotoxin results in a loss of its toxic activity. J Biol Chem 265:22520–22525 Google Scholar
Tweten RK, Barbieri JT, Collier RJ (1985) Diphtheria toxin. Effect of substituting aspartic acid for glutamic acid 148 on ADP-ribosyltransferase activity. J Biol Chem 260:10392–10394 Google Scholar
Uchikoshi F, Ito T, Kamiike W, Moriguchi A, Nozaki S, Ito A, Kuhara A, Miyata M, Matsuda H, Miyasaka M, Nakao H, Makino S, Nozawa M (1995) Appearance of immunoregulatory RT6+ T cells after successful pancreas transplantation in diabetic BB rats. Transplant Proc 27:599–601 Google Scholar
Ui M (1990) Pertussis toxin as a valuable probe for G-protein involvement in signal transduction. In: Moss J, Vaughan M (eds) ADP-ribosylating toxins and G proteins: insights into signal transduction. American Society for Microbiology, Washington DC, pp 45–77 Google Scholar
Uroshiyama T, Tanigawa Y, Tsuchiya M, Matsuura R, Ueki M, Sugimoto O, Shimoyama M (1985) Amino acid sequence of histone H1 at the ADP-ribose-accepting site and ADP-ribose histone-H1 adduct as an inhibitor of cyclic-AMP-dependent phosphorylation. Eur J Biochem 151:173–177 Google Scholar
Vandekerckhove J, Schering B, Barmann M, Aktories K (1987) Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Lett 225:48–52 Google Scholar
Vandekerckhove J, Schering B, Barmann M, Aktories K (1988) Botulinum C2 toxin ADP-ribosylates cytoplasmic βγ-actin in arginine 177. J Biol Chem 263:696–700 Google Scholar
Wang J, Nemoto E, Kots AY, Kaslow HR, Dennert G (1994) Regulation of cytotoxic T cells by ecto-nicotinamide adenine dinucleotide (NAD) correlates with cell surface GPI-anchored/arginine ADP-ribosyltransferase. J Immunol 153:4048–4058 Google Scholar
Wang J, Nemoto E, Dennert G (1996) Regulation of CTL by ectonicotinamide adenine dinucleotide (NAD) involves ADP-ribosylation of a p56lck-associated protein. J Immunol 156:2819–2827 Google Scholar
Watkins PA, Moss J (1982) Effects of nucleotides on activity of a purified ADP-ribosyltransferase from turkey erythrocytes. Arch Biochem Biophys 216:74–80 Google Scholar
Watkins PA, Kanoho Y Moss J (1987) Inhibition of the GTP-ase activity of transducin by an NAD+: arginine ADP-ribosyltransferase from turkey erythrocytes. Biochem J 248:749–754 Google Scholar
Wegner A, Aktories K (1988) ADP-ribosylated actin caps the barbed ends of actin filaments. J Biol Chem 263:13739–13742 Google Scholar
Welsh CF, Moss J, Vaughan M (1994) ADP-ribosylation factors: a family of } 20-kDa guanine nucleotide-binding proteins that activate cholera toxin. Mol Cell Biochem 138:157–166 Google Scholar
West RE Jr, Moss J (1986) Amino acid specific ADP-ribosylation: specific NAD:arginine mono-ADP-ribosyltransferases associated with turkey erythrocyte nuclei and plasma membranes. Biochemistry 25:8057–8062 Google Scholar
Wick MJ, Iglewski BH (1990) Pseudomonas aeruginosa exotoxin A. In: Moss J, Vaughan M (eds) ADP-ribosylating toxins and G proteins: insights into signal transduction. American Society for Microbiology, Washington DC, pp 31–43 Google Scholar
Williamson KC, Moss J (1990) Mono-ADP-ribosyltransferases and ADP-ribosylarginine hydrolases: a mono-ADP-ribosylation cycle in animal cells. In: Moss J, Vaughan M (eds) ADP-ribosylating toxins and G proteins: insights into signal transduction. American Society for Microbiology, Washington DC, pp 493–510 Google Scholar
Wilson BA, Blanke SR, Reich KA, Collier RJ (1994) Active-site mutations of diphtheria toxin. J Biol Chem 269:23296–23301 Google Scholar
Wozniak DJ, Hsu L-H, Galloway DR (1988) His-426 of the Pseudomonas aeruginosa exotoxin A is required for ADP-ribosylation of elongation factor II. Proc Natl Acad Sci USA 85:8880–8884 Google Scholar
Xu Y, Barbancon-Finck V, Barbieri JT (1994) Role of histidine 35 of the S1 subunit of pertussis toxin in the ADP-ribosylation of Transducin. J Biol Chem 269:9993–9999 Google Scholar
Yamada K, Tsuchiya M, Mishima K, Shimoyama M (1992) p33, and endogenous target protein for arginine-specific ADP-ribosyltransferase in chicken polymorphonuclear leukocytes, is highly homologous to mim-1 protein (_myb_-induced myeloid protein-1). FEBS Lett 311:203–205 Google Scholar
Yamada K, Tsuchiya M, Nishikori Y, Shimoyama M (1994) Automodification of arginine-specific ADP-ribosyltransferase purified from chicken peripheral heterophils and alteration of the transferase activity. Arch Biochem Biophys 308:31–36 Google Scholar
[Yost DA, Moss J (1983) Amino acid-specific ADP-ribosylation. Evidence for two distinct NAD:arginine ADP-ribosyltransferases in turkey erythrocytes. J Biol Chem 258:4926–4929] Google Scholar
Zoche M, Koch K-W (1995) Purified retinal nitric oxide synthase enhances ADP-ribosylation of rod outer segment proteins. FEBS Lett 357:178–182 Google Scholar
Zolkiewska A, Moss J (1993) Integrin α7 as substrate for a glycosylphosphatidylinositol-anchored ADP-ribosyltransferase on the surface of skeletal muscle cells. J Biol Chem 268:25273–25276 Google Scholar
Zolkiewska A, Moss J (1995) Processing of ADP-ribosylated integrin 7 in skeletal muscle myotubes. J Biol Chem 270:9227–9233 Google Scholar
Zolkiewska A, Nightingale MS, Moss J (1992) Molecular characterization of NAD:arginine ADP-ribosyltransferase from rabbit skeletal muscle. Proc Natl Acad Sci USA 89:11352–11356 Google Scholar