- Agosto MA, Ivanovic T, Nibert ML (2006) Mammalian reovirus, a nonfusogenic nonenveloped virus, forms size-selective pores in a model membrane. Proc Natl Acad Sci USA 103:16496–16501
PubMed CAS Google Scholar
- Albinsson B, Kidd AH (1999) Adenovirus type 41 lacks an RGD alpha(v)-integrin binding motif on the penton base and undergoes delayed uptake in A549 cells. Virus Res 64:125–136
PubMed CAS Google Scholar
- Alemany R, Curiel DT (2001) CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Ther 8:1347–1353
PubMed CAS Google Scholar
- Amstutz B, Gastaldelli M, Kalin S, Imelli N, Boucke K, Wandeler E, Mercer J, Hemmi S, Greber UF (2008) Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3. EMBO J 27:956–969
PubMed CAS Google Scholar
- Arnberg N, Kidd AH, Edlund K, Nilsson J, Pring-Akerblom P, Wadell G (2002a) Adenovirus type 37 binds to cell surface sialic acid through a charge-dependent interaction. Virology 302:33–43
PubMed CAS Google Scholar
- Arnberg N, Pring-Akerblom P, Wadell G (2002b) Adenovirus type 37 uses sialic acid as a cellular receptor on Chang C cells. J Virol 76:8834–8841
PubMed CAS Google Scholar
- Bai M, Harfe B, Freimuth P (1993) Mutations that alter an Arg-Gly-Asp (RGD) sequence in the adenovirus type 2 penton base protein abolish its cell-rounding activity and delay virus reproduction in flat cells. J Virol 67:5198–5205
PubMed CAS Google Scholar
- Bailey CJ, Crystal RG, Leopold PL (2003) Association of adenovirus with the microtubule organizing center. J Virol 77:13275–13287
PubMed CAS Google Scholar
- Belnap DM, Filman DJ, Trus BL, Cheng N, Booy FP, Conway JF, Curry S, Hiremath CN, Tsang SK, Steven AC, Hogle JM (2000) Molecular tectonic model of virus structural transitions: the putative cell entry states of poliovirus. J Virol 74:1342–1354
PubMed CAS Google Scholar
- Benson SD, Bamford JK, Bamford DH, Burnett RM (1999) Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98:825–833
PubMed CAS Google Scholar
- Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323
PubMed CAS Google Scholar
- Bergelson JM, Krithivas A, Celi L, Droguett G, Horwitz MS, Wickham T, Crowell RL, Finberg RW (1998) The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J Virol 72:415–419
PubMed CAS Google Scholar
- Bewley MC, Springer K, Zhang YB, Freimuth P, Flanagan JM (1999) Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 286:1579–1583
PubMed CAS Google Scholar
- Blumenthal R, Seth P, Willingham MC, Pastan I (1986) pH-dependent lysis of liposomes by adenovirus. Biochemistry 25:2231–2237
PubMed CAS Google Scholar
- Boulanger PA, Hennache B (1973) Adenovirus uncoating: an additional evidence for the involvement of cell surface in capsid labilization. FEBS Lett 35:15–18
PubMed CAS Google Scholar
- Boulanger PA, Breynaert MD, Biserte G (1970) Lysosomes and the problem of adenovirus uncoating. Exp Mol Pathol 12:235–242
PubMed CAS Google Scholar
- Brown DT, Burlingham BT (1973) Penetration of host cell membranes by adenovirus 2. J Virol 12:386–396
PubMed CAS Google Scholar
- Buck CB, Day PM, Thompson CD, Lubkowski J, Lu W, Lowy DR, Schiller JT (2006) Human {alpha}-defensins block papillomavirus infection. Proc Natl Acad Sci USA 103:1516–1521
PubMed CAS Google Scholar
- Burmeister WP, Guilligay D, Cusack S, Wadell G, Arnberg N (2004) Crystal structure of species D adenovirus fiber knobs and their sialic acid binding sites. J Virol 78:7727–7736
PubMed CAS Google Scholar
- Caravokyri C, Leppard KN (1995) Constitutive episomal expression of polypeptide IX (pIX) in a 293-based cell line complements the deficiency of pIX mutant adenovirus type 5. J Virol 69:6627–6633
PubMed CAS Google Scholar
- Carey B, Staudt MK, Bonaminio D, van der Loo JC, Trapnell BC (2007) PU.1 redirects adenovirus to lysosomes in alveolar macrophages, uncoupling internalization from infection. J Immunol 178:2440–2447
PubMed CAS Google Scholar
- Carrasco L (1994) Entry of animal viruses and macromolecules into cells. FEBS Lett 350:151–154
PubMed CAS Google Scholar
- Cattaneo R (2004) Four viruses, two bacteria, and one receptor: membrane cofactor protein (CD46) as pathogens’ magnet. J Virol 78:4385–4388
PubMed CAS Google Scholar
- Chardonnet Y, Dales S (1970) Early events in the interaction of adenoviruses with HeLa cells. I. Penetration of type 5 and intracellular release of the DNA genome. Virology 40:462–477
PubMed CAS Google Scholar
- Chatterjee PK, Vayda ME, Flint SJ (1985) Interactions among the three adenovirus core proteins. J Virol 55:379–386
PubMed CAS Google Scholar
- Chillon M, Kremer EJ (2001) Trafficking and propagation of canine adenovirus vectors lacking a known integrin-interacting motif. Hum Gene Ther 12:1815–1823
PubMed CAS Google Scholar
- Chiu CY, Mathias P, Nemerow GR, Stewart PL (1999) Structure of adenovirus complexed with its internalization receptor, alphavbeta5 integrin. J Virol 73:6759–6768
PubMed CAS Google Scholar
- Chiu CY, Wu E, Brown SL, Von Seggern DJ, Nemerow GR, Stewart PL (2001) Structural analysis of a fiber-pseudotyped adenovirus with ocular tropism suggests differential modes of cell receptor interactions. J Virol 75:5375–5380
PubMed CAS Google Scholar
- Chroboczek J, Ruigrok RW, Cusack S (1995) Adenovirus fiber. Curr Top Microbiol Immunol 199(Pt 1):163–200
PubMed CAS Google Scholar
- Cohen CJ, Gaetz J, Ohman T, Bergelson JM (2001a) Multiple regions within the coxsackievirus and adenovirus receptor cytoplasmic domain are required for basolateral sorting. J Biol Chem 276:25392–25398
PubMed CAS Google Scholar
- Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM (2001b) The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci USA 98:15191–15196
PubMed CAS Google Scholar
- Cotten M, Weber JM (1995) The adenovirus protease is required for virus entry into host cells. Virology 213(2):494–502
Google Scholar
- Cotten M, Wagner E, Zatloukal K, Phillips S, Curiel DT, Birnstiel ML (1992) High-efficiency receptor-mediated delivery of small and large (48 kilobase gene constructs using the endosome-disruption activity of defective or chemically inactivated adenovirus particles. Proc Natl Acad Sci USA 89:6094–6098
PubMed CAS Google Scholar
- Dales S, Chardonnet Y (1973) Early events in the interaction of adenoviruses with HeLa cells. IV. Association with microtubules and the nuclear pore complex during vectorial movement of the inoculum. Virology 56:465–483
PubMed CAS Google Scholar
- Daniels R, Rusan NM, Wadsworth P, Hebert DN (2006) SV40 VP2 and VP3 insertion into ER membranes is controlled by the capsid protein VP1: implications for DNA translocation out of the ER. Mol Cell 24:955–966
PubMed CAS Google Scholar
- Dechecchi MC, Tamanini A, Bonizzato A, Cabrini G (2000) Heparan sulfate glycosaminoglycans are involved in adenovirus type 5 and 2-host cell interactions. Virology 268:382–390
PubMed CAS Google Scholar
- Ding J, McGrath WJ, Sweet RM, Mangel WF (1996) Crystal structure of the human adenovirus proteinase with its 11 amino acid cofactor. Embo J 15:1778–1783
PubMed CAS Google Scholar
- Einfeld DA, Schroeder R, Roelvink PW, Lizonova A, King CR, Kovesdi I, Wickham TJ (2001) Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions. J Virol 75:11284–11291
PubMed CAS Google Scholar
- Everitt E, Philipson L (1974) Structural proteins of adenoviruses. XI. Purification of three low molecular weight virion proteins of adenovirus type 2 and their synthesis during productive infection. Virology 62:253–269
PubMed CAS Google Scholar
- Everitt E, Persson MJ, Wohlfart C (1988) pH-dependent exposure of endoproteolytic cleavage sites of the adenovirus 2 hexon protein. FEMS Microbiol Lett 49:229–233
CAS Google Scholar
- Everitt E, de Luca A, Blixt Y (1992) Antibody-mediated uncoating of adenovirus in vitro. FEMS Microbiol Lett 77:21–27
PubMed CAS Google Scholar
- Fabry CM, Rosa-Calatrava M, Conway JF, Zubieta C, Cusack S, Ruigrok RW, Schoehn G (2005) A quasi-atomic model of human adenovirus type 5 capsid. Embo J 24:1645–1654
PubMed CAS Google Scholar
- Fabry CM, Rosa-Calatrava M, Moriscot C, Ruigrok RW, Boulanger P, Schoehn G (2009) The C-terminal domains of adenovirus serotype 5 protein IX assemble into an antiparallel structure on the facets of the capsid. J Virol 83:1135–1139
PubMed CAS Google Scholar
- Farr GA, Zhang LG, Tattersall P (2005) Parvoviral virions deploy a capsid-tethered lipolytic enzyme to breach the endosomal membrane during cell entry. Proc Natl Acad Sci USA 102:17148–17153
PubMed CAS Google Scholar
- FitzGerald DJ, Padmanabhan R, Pastan I, Willingham MC (1983) Adenovirus-induced release of epidermal growth factor and pseudomonas toxin into the cytosol of KB cells during receptor-mediated endocytosis. Cell 32:607–617
PubMed CAS Google Scholar
- Furcinitti PS, van Oostrum J, Burnett RM (1989) Adenovirus polypeptide IX revealed as capsid cement by difference images from electron microscopy and crystallography. EMBO J 8:3563–3570
PubMed CAS Google Scholar
- Gaggar A, Shayakhmetov DM, Lieber A (2003) CD46 is a cellular receptor for group B adenoviruses. Nat Med 9:1408–1412
PubMed CAS Google Scholar
- Gastaldelli M, Imelli N, Boucke K, Amstutz B, Meier O, Greber UF (2008) Infectious adenovirus type 2 transport through early but not late endosomes. Traffic 9(12):2265–2278
PubMed CAS Google Scholar
- Goldman MJ, Wilson JM (1995) Expression of alpha v beta 5 integrin is necessary for efficient adenovirus-mediated gene transfer in the human airway. J Virol 69:5951–5958
PubMed CAS Google Scholar
- Goldman M, Su Q, Wilson JM (1996) Gradient of RGD-dependent entry of adenoviral vector in nasal and intrapulmonary epithelia: implications for gene therapy of cystic fibrosis. Gene Ther 3:811–818
PubMed CAS Google Scholar
- Greber UF (1998) Virus assembly and disassembly: the adenovirus cysteine protease as a trigger factor. Rev Med Virol 8:213–222
PubMed CAS Google Scholar
- Greber UF, Willetts M, Webster P, Helenius A (1993) Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75:477–486
PubMed CAS Google Scholar
- Greber UF, Webster P, Weber J, Helenius A (1996) The role of the adenovirus protease on virus entry into cells. Embo J 15:1766–1777
PubMed CAS Google Scholar
- Gustin KE, Imperiale MJ (1998) Encapsidation of viral DNA requires the adenovirus L1 52/55-kilodalton protein. J Virol 72:7860–7870
PubMed CAS Google Scholar
- Guy J, Drabek D, Antoniou M (1995) Delivery of DNA into mammalian cells by receptor-mediated endocytosis and gene therapy. Mol Biotechnol 3:237–248
PubMed CAS Google Scholar
- Horne WS, Wiethoff CM, Cui C, Wilcoxen KM, Amorin M, Ghadiri MR, Nemerow GR (2005) Antiviral cyclic D, L-alpha-peptides: targeting a general biochemical pathway in virus infections. Bioorg Med Chem 13:5145–5153
PubMed CAS Google Scholar
- Ivanovic T, Agosto MA, Zhang L, Chandran K, Harrison SC, Nibert ML (2008) Peptides released from reovirus outer capsid form membrane pores that recruit virus particles. Embo J 27:1289–1298
PubMed CAS Google Scholar
- Janshoff A, Bong DT, Steinem C, Johnson JE, Ghadiri MR (1999) An animal virus-derived peptide switches membrane morphology: possible relevance to nodaviral transfection processes. Biochemistry 38:5328–5336
PubMed CAS Google Scholar
- Kalyuzhniy O, Di Paolo NC, Silvestry M, Hofherr SE, Barry MA, Stewart PL, Shayakhmetov DM (2008) Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. Proc Natl Acad Sci USA 105:5483–5488
PubMed CAS Google Scholar
- Laver WG, Wrigley NG, Pereira HG (1969) Removal of pentons from particles of adenovirus type 2. Virology 39:599–604
PubMed CAS Google Scholar
- Law LK, Davidson BL (2005) What does it take to bind CAR? Mol Ther 12:599–609
PubMed CAS Google Scholar
- Lawrence WC, Ginsberg HS (1967) Intracellular uncoating of type 5 adenovirus deoxyribonucleic acid. J Virol 1:851–867
PubMed CAS Google Scholar
- Legrand V, Spehner D, Schlesinger Y, Settelen N, Pavirani A, Mehtali M (1999) Fiberless recombinant adenoviruses: virus maturation and infectivity in the absence of fiber. J Virol 73:907–919
PubMed CAS Google Scholar
- Lehmberg E, Traina JA, Chakel JA, Chang RJ, Parkman M, McCaman MT, Murakami PK, Lahidji V, Nelson JW, Hancock WS, Nestaas E, Pungor E Jr (1999) Reversed-phase high-performance liquid chromatographic assay for the adenovirus type 5 proteome. J Chromatogr B Biomed Sci Appl 732:411–423
PubMed CAS Google Scholar
- Leopold PL, Kreitzer G, Miyazawa N, Rempel S, Pfister KK, Rodriguez-Boulan E, Crystal RG (2000) Dynein- and microtubule-mediated translocation of adenovirus serotype 5 occurs after endosomal lysis. Hum Gene Ther 11:151–165
PubMed CAS Google Scholar
- Li E, Stupack D, Bokoch GM, Nemerow GR (1998a) Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. J Virol 72:8806–8812
PubMed CAS Google Scholar
- Li E, Stupack D, Klemke R, Cheresh DA, Nemerow GR (1998b) Adenovirus endocytosis via alpha(v) integrins requires phosphoinositide-3-OH kinase. J Virol 72:2055–2061
PubMed CAS Google Scholar
- Li E, Stupack DG, Brown SL, Klemke R, Schlaepfer DD, Nemerow GR (2000) Association of p130CAS with phosphatidylinositol-3-OH kinase mediates adenovirus cell entry. J Biol Chem 275:14729–14735
PubMed CAS Google Scholar
- Li E, Brown SL, Stupack DG, Puente XS, Cheresh DA, Nemerow GR (2001) Integrin alpha(v)beta1 is an adenovirus coreceptor. J Virol 75:5405–5409
PubMed CAS Google Scholar
- Lisewski U, Shi Y, Wrackmeyer U, Fischer R, Chen C, Schirdewan A, Juttner R, Rathjen F, Poller W, Radke MH, Gotthardt M (2008) The tight junction protein CAR regulates cardiac conduction and cell-cell communication. J Exp Med 205:2369–2379
PubMed CAS Google Scholar
- Lonberg-Holm K, Philipson L (1969) Early events of virus-cell interaction in an adenovirus system. J Virol 4:323–338
PubMed CAS Google Scholar
- Lortat-Jacob H, Chouin E, Cusack S, van Raaij MJ (2001) Kinetic analysis of adenovirus fiber binding to its receptor reveals an avidity mechanism for trimeric receptor-ligand interactions. J Biol Chem 276:9009–9015
PubMed CAS Google Scholar
- Lukashok SA, Horwitz MS (1998) New perspectives in adenoviruses. Curr Clin Top Infect Dis 18:286–305
PubMed CAS Google Scholar
- Magnuson B, Rainey EK, Benjamin T, Baryshev M, Mkrtchian S, Tsai B (2005) ERp29 triggers a conformational change in polyomavirus to stimulate membrane binding. Mol Cell 20:289–300
PubMed CAS Google Scholar
- Mani B, Baltzer C, Valle N, Almendral JM, Kempf C, Ros C (2006) Low pH-dependent endosomal processing of the incoming parvovirus minute virus of mice virion leads to externalization of the VP1 N-terminal sequence (N-VP1), N-VP2 cleavage, and uncoating of the full-length genome. J Virol 80:1015–1024
PubMed CAS Google Scholar
- Marsh MP, Campos SK, Baker ML, Chen CY, Chiu W, Barry MA (2006) Cryoelectron microscopy of protein IX-modified adenoviruses suggests a new position for the C terminus of protein IX. J Virol 80:11881–11886
PubMed CAS Google Scholar
- Martin-Fernandez M, Longshaw SV, Kirby I, Santis G, Tobin MJ, Clarke DT, Jones GR (2004) Adenovirus type-5 entry and disassembly followed in living cells by FRET, fluorescence anisotropy, and FLIM. Biophys J 87:1316–1327
PubMed CAS Google Scholar
- Mathias P, Wickham T, Moore M, Nemerow G (1994) Multiple adenovirus serotypes use alpha v integrins for infection. J Virol 68:6811–6814
PubMed CAS Google Scholar
- McGrath WJ, Abola AP, Toledo DL, Brown MT, Mangel WF (1996) Characterization of human adenovirus proteinase activity in disrupted virus particles. Virology 217:131–138
PubMed CAS Google Scholar
- McGrath WJ, Ding J, Didwania A, Sweet RM, Mangel WF (2003) Crystallographic structure at 1.6-A resolution of the human adenovirus proteinase in a covalent complex with its 11-amino-acid peptide cofactor: insights on a new fold. Biochim Biophys Acta 1648:1–11
PubMed CAS Google Scholar
- Meier O, Boucke K, Hammer SV, Keller S, Stidwill RP, Hemmi S, Greber UF (2002) Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J Cell Biol 158:1119–1131
PubMed CAS Google Scholar
- Meunier-Durmort C, Picart R, Ragot T, Perricaudet M, Hainque B, Forest C (1997) Mechanism of adenovirus improvement of cationic liposome-mediated gene transfer. Biochim Biophys Acta 1330:8–16
PubMed CAS Google Scholar
- Miles BD, Luftig RB, Weatherbee JA, Weihing RR, Weber J (1980) Quantitation of the interaction between adenovirus types 2 and 5 and microtubules inside infected cells. Virology 105:265–269
PubMed CAS Google Scholar
- Miyazawa N, Crystal RG, Leopold PL (2001) Adenovirus serotype 7 retention in a late endosomal compartment prior to cytosol escape is modulated by fiber protein. J Virol 75:1387–1400
PubMed CAS Google Scholar
- Morgan C, Rosenkranz HS, Mednis B (1969) Structure and development of viruses as observed in the electron microscope. X. Entry and uncoating of adenovirus. J Virol 4:777–796
PubMed CAS Google Scholar
- Nakano MY, Greber UF (2000) Quantitative microscopy of fluorescent adenovirus entry. J Struct Biol 129:57–68
PubMed CAS Google Scholar
- Nakano MY, Boucke K, Suomalainen M, Stidwill RP, Greber UF (2000) The first step of adenovirus type 2 disassembly occurs at the cell surface, independently of endocytosis and escape to the cytosol. J Virol 74:7085–7095
PubMed CAS Google Scholar
- National Institutes of Health Recombinant DNA Advisory Committee (2002) Assessment of adenoviral vector safety and toxicity: report of the National Institutes of Health Recombinant DNA Advisory Committee. Hum Gene Ther 13:3–13
Google Scholar
- Nicklin SA, Wu E, Nemerow GR, Baker AH (2005) The influence of adenovirus fiber structure and function on vector development for gene therapy. Mol Ther 12:384–393
PubMed CAS Google Scholar
- Otero MJ, Carrasco L (1987) Proteins are cointernalized with virion particles during early infection. Virology 160:75–80
PubMed CAS Google Scholar
- Pache L, Venkataraman S, Nemerow GR, Reddy VS (2008) Conservation of fiber structure and CD46 usage by subgroup B2 adenoviruses. Virology 375:573–579
PubMed CAS Google Scholar
- Perez L, Carrasco L (1994) Involvement of the vacuolar H(+)-ATPase in animal virus entry. J Gen Virol 75(Pt 10):2595–2606
PubMed CAS Google Scholar
- Persson BD, Reiter DM, Marttila M, Mei YF, Casasnovas JM, Arnberg N, Stehle T (2007) Adenovirus type 11 binding alters the conformation of its receptor CD46. Nat Struct Mol Biol 14:164–166
PubMed CAS Google Scholar
- Philipson L (1967) Attachment and eclipse of adenovirus. J Virol 1:868–875
PubMed CAS Google Scholar
- Philipson L, Lonberg-Holm K, Pettersson U (1968) Virus-receptor interaction in an adenovirus system. J Virol 2:1064–1075
PubMed CAS Google Scholar
- Philpott NJ, Nociari M, Elkon KB, Falck-Pedersen E (2004) Adenovirus-induced maturation of dendritic cells through a PI3 kinase-mediated TNF-alpha induction pathway. Proc Natl Acad Sci USA 101:6200–6205
PubMed CAS Google Scholar
- Prage L, Pettersson U, Philipson L (1968) Internal basic proteins in adenovirus. Virology 36:508–511
PubMed CAS Google Scholar
- Prage L, Pettersson U, Hoglund S, Lonberg-Holm K, Philipson L (1970) Structural proteins of adenoviruses. IV. Sequential degradation of the adenovirus type 2 virion. Virology 42:341–358
PubMed CAS Google Scholar
- Rajala MS, Rajala RV, Astley RA, Butt AL, Chodosh J (2005) Corneal cell survival in adenovirus type 19 infection requires phosphoinositide 3-kinase/Akt activation. J Virol 79:12332–12341
PubMed CAS Google Scholar
- Raman S, Hsu TH, Ashley SL, Spindler KR (2009) Integrin and heparan sulfate usage as receptors for mouse adenovirus type 1. J Virol 83:2831–2838
PubMed CAS Google Scholar
- Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, Wilson JM, Batshaw ML (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80:148–158
PubMed CAS Google Scholar
- Rexroad J, Evans RK, Middaugh CR (2006) Effect of pH and ionic strength on the physical stability of adenovirus type 5. J Pharm sci 95:237–247
PubMed CAS Google Scholar
- Rodriguez E, Everitt E (1996) Adenovirus uncoating and nuclear establishment are not affected by weak base amines. J Virol 70:3470–3477
PubMed CAS Google Scholar
- Roelvink PW, Lizonova A, Lee JG, Li Y, Bergelson JM, Finberg RW, Brough DE, Kovesdi I, Wickham TJ (1998) The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J Virol 72:7909–7915
PubMed CAS Google Scholar
- Roelvink PW, Mi Lee G, Einfeld DA, Kovesdi I, Wickham TJ (1999) Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 286:1568–1571
PubMed CAS Google Scholar
- Roy S, Clawson DS, Calcedo R, Lebherz C, Sanmiguel J, Wu D, Wilson JM (2005) Use of chimeric adenoviral vectors to assess capsid neutralization determinants. Virology 333:207–214
PubMed CAS Google Scholar
- Russell WC, Valentine RC, Pereira HG (1967) The effect of heat on the anatomy of the adenovirus. J Gen Virol 1:509–522
PubMed CAS Google Scholar
- Rux JJ, Kuser PR, Burnett RM (2003) Structural and phylogenetic analysis of adenovirus hexons by use of high-resolution x-ray crystallographic, molecular modeling, and sequence-based methods. J Virol 77:9553–9566
PubMed CAS Google Scholar
- Saban SD, Nepomuceno RR, Gritton LD, Nemerow GR, Stewart PL (2005) CryoEM structure at 9A resolution of an adenovirus vector targeted to hematopoietic cells. J Mol Biol 349:526–537
PubMed CAS Google Scholar
- Saban SD, Silvestry M, Nemerow GR, Stewart PL (2006) Visualization of alpha-helices in a 6-angstrom resolution cryoelectron microscopy structure of adenovirus allows refinement of capsid protein assignments. J Virol 80:12049–12059
PubMed CAS Google Scholar
- San Martin C, Glasgow JN, Borovjagin A, Beatty MS, Kashentseva EA, Curiel DT, Marabini R, Dmitriev IP (2008) Localization of the N-terminus of minor coat protein IIIa in the adenovirus capsid. J Mol Biol 383:923–934
PubMed CAS Google Scholar
- Segerman A, Atkinson JP, Marttila M, Dennerquist V, Wadell G, Arnberg N (2003) Adenovirus type 11 uses CD46 as a cellular receptor. J Virol 77:9183–9191
PubMed CAS Google Scholar
- Seki T, Dmitriev I, Kashentseva E, Takayama K, Rots M, Suzuki K, Curiel DT (2002) Artificial extension of the adenovirus fiber shaft inhibits infectivity in coxsackievirus and adenovirus receptor-positive cell lines. J Virol 76:1100–1108
PubMed CAS Google Scholar
- Seth P (1994) Adenovirus-dependent release of choline from plasma membrane vesicles at an acidic pH is mediated by the penton base protein. J Virol 68:1204–1206
PubMed CAS Google Scholar
- Seth P, Fitzgerald D, Ginsberg H, Willingham M, Pastan I (1984a) Evidence that the penton base of adenovirus is involved in potentiation of toxicity of Pseudomonas exotoxin conjugated to epidermal growth factor. Mol Cell Biol 4:1528–1533
PubMed CAS Google Scholar
- Seth P, Fitzgerald DJ, Willingham MC, Pastan I (1984b) Role of a low-pH environment in adenovirus enhancement of the toxicity of a Pseudomonas exotoxin-epidermal growth factor conjugate. J Virol 51:650–655
PubMed CAS Google Scholar
- Seth P, Willingham MC, Pastan I (1984c) Adenovirus-dependent release of 51Cr from KB cells at an acidic pH. J Biol Chem 259:14350–14353
PubMed CAS Google Scholar
- Seth P, Pastan I, Willingham MC (1985a) Adenovirus-dependent increase in cell membrane permeability. J Biol Chem 260:9598–9602
PubMed CAS Google Scholar
- Seth P, Willingham MC, Pastan I (1985b) Binding of adenovirus and its external proteins to Triton X-114 Dependence on pH. J Biol Chem 260:14431–14434
PubMed CAS Google Scholar
- Shayakhmetov DM, Lieber A (2000) Dependence of adenovirus infectivity on length of the fiber shaft domain. J Virol 74:10274–10286
PubMed CAS Google Scholar
- Shayakhmetov DM, Li ZY, Ternovoi V, Gaggar A, Gharwan H, Lieber A (2003) The interaction between the fiber knob domain and the cellular attachment receptor determines the intracellular trafficking route of adenoviruses. J Virol 77:3712–3723
PubMed CAS Google Scholar
- Shayakhmetov DM, Gaggar A, Ni S, Li ZY, Lieber A (2005) Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol 79:7478–7491
PubMed CAS Google Scholar
- Sirena D, Lilienfeld B, Eisenhut M, Kalin S, Boucke K, Beerli RR, Vogt L, Ruedl C, Bachmann MF, Greber UF, Hemmi S (2004) The human membrane cofactor CD46 is a receptor for species B adenovirus serotype 3. J Virol 78:4454–4462
PubMed CAS Google Scholar
- Smith JG, Nemerow GR (2008) Mechanism of adenovirus neutralization by human alpha-defensins. Cell Host Microbe 3:11–19
PubMed CAS Google Scholar
- Smith T, Idamakanti N, Kylefjord H, Rollence M, King L, Kaloss M, Kaleko M, Stevenson SC (2002) In vivo hepatic adenoviral gene delivery occurs independently of the coxsackievirus-adenovirus receptor. Mol Ther 5:770–779
PubMed CAS Google Scholar
- Smith TA, Idamakanti N, Marshall-Neff J, Rollence ML, Wright P, Kaloss M, King L, Mech C, Dinges L, Iverson WO, Sherer AD, Markovits JE, Lyons RM, Kaleko M, Stevenson SC (2003) Receptor interactions involved in adenoviral-mediated gene delivery after systemic administration in non-human primates. Hum Gene Ther 14:1595–1604
PubMed CAS Google Scholar
- Smith JG, Cassany A, Gerace L, Ralston R, Nemerow GR (2008) Neutralizing antibody blocks adenovirus infection by arresting microtubule-dependent cytoplasmic transport. J Virol 82:6492–6500
PubMed CAS Google Scholar
- Stewart PL, Nemerow GR (2007) Cell integrins: commonly used receptors for diverse viral pathogens. Trends Microbiol 15:500–507
PubMed CAS Google Scholar
- Stewart PL, Fuller SD, Burnett RM (1993) Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy. Embo J 12:2589–2599
PubMed CAS Google Scholar
- Stewart PL, Chiu CY, Huang S, Muir T, Zhao Y, Chait B, Mathias P, Nemerow GR (1997) Cryo-EM visualization of an exposed RGD epitope on adenovirus that escapes antibody neutralization. Embo J 16:1189–1198
PubMed CAS Google Scholar
- Stonebraker JR, Wagner D, Lefensty RW, Burns K, Gendler SJ, Bergelson JM, Boucher RC, O’Neal WK, Pickles RJ (2004) Glycocalyx restricts adenoviral vector access to apical receptors expressed on respiratory epithelium in vitro and in vivo: role for tethered mucins as barriers to lumenal infection. J Virol 78:13755–13768
PubMed CAS Google Scholar
- Strunze S, Trotman LC, Boucke K, Greber UF (2005) Nuclear targeting of adenovirus type 2 requires CRM1-mediated nuclear export. Mol Biol Cell 16:2999–3009
PubMed CAS Google Scholar
- Sumida SM, Truitt DM, Lemckert AA, Vogels R, Custers JH, Addo MM, Lockman S, Peter T, Peyerl FW, Kishko MG, Jackson SS, Gorgone DA, Lifton MA, Essex M, Walker BD, Goudsmit J, Havenga MJ, Barouch DH (2005) Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein. J Immunol 174:7179–7185
PubMed CAS Google Scholar
- Suomalainen M, Nakano MY, Keller S, Boucke K, Stidwill RP, Greber UF (1999) Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus. J Cell Biol 144:657–672
PubMed CAS Google Scholar
- Sussenbach JS (1967) Early events in the infection process of adenovirus type 5 in HeLa cells. Virology 33:567–574
PubMed CAS Google Scholar
- Svensson U (1985) Role of vesicles during adenovirus 2 internalization into HeLa cells. J Virol 55:442–449
PubMed CAS Google Scholar
- Svensson U, Persson R (1984) Entry of adenovirus 2 into HeLa cells. J Virol 51:687–694
PubMed CAS Google Scholar
- Tomko RP, Xu R, Philipson L (1997) HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA 94:3352–3356
PubMed CAS Google Scholar
- Toogood CI, Crompton J, Hay RT (1992) Antipeptide antisera define neutralizing epitopes on the adenovirus hexon. J Gen Virol 73(Pt 6):1429–1435
PubMed CAS Google Scholar
- van Oostrum J, Burnett RM (1985) Molecular composition of the adenovirus type 2 virion. J Virol 56:439–448
PubMed Google Scholar
- van Raaij MJ, Mitraki A, Lavigne G, Cusack S (1999) A triple beta-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature 401:935–938
PubMed Google Scholar
- Varga MJ, Weibull C, Everitt E (1991) Infectious entry pathway of adenovirus type 2. J Virol 65:6061–6070
PubMed CAS Google Scholar
- Varghese R, Mikyas Y, Stewart PL, Ralston R (2004) Postentry neutralization of adenovirus type 5 by an antihexon antibody. J Virol 78:12320–12332
PubMed CAS Google Scholar
- Von Seggern DJ, Chiu CY, Fleck SK, Stewart PL, Nemerow GR (1999) A helper-independent adenovirus vector with E1, E3, and fiber deleted: structure and infectivity of fiberless particles. J Virol 73:1601–1608
Google Scholar
- Waddington SN, McVey JH, Bhella D, Parker AL, Barker K, Atoda H, Pink R, Buckley SM, Greig JA, Denby L, Custers J, Morita T, Francischetti IM, Monteiro RQ, Barouch DH, van Rooijen N, Napoli C, Havenga MJ, Nicklin SA, Baker AH (2008) Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 132:397–409
PubMed CAS Google Scholar
- Walters RW, Grunst T, Bergelson JM, Finberg RW, Welsh MJ, Zabner J (1999) Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. J Biol Chem 274:10219–10226
PubMed CAS Google Scholar
- Walters RW, Freimuth P, Moninger TO, Ganske I, Zabner J, Welsh MJ (2002) Adenovirus fiber disrupts CAR-mediated intercellular adhesion allowing virus escape. Cell 110:789–799
PubMed CAS Google Scholar
- Wang K, Huang S, Kapoor-Munshi A, Nemerow G (1998) Adenovirus internalization and infection require dynamin. J Virol 72:3455–3458
PubMed CAS Google Scholar
- Wang K, Guan T, Cheresh DA, Nemerow GR (2000) Regulation of adenovirus membrane penetration by the cytoplasmic tail of integrin beta5. J Virol 74:2731–2739
PubMed CAS Google Scholar
- Wang H, Liaw YC, Stone D, Kalyuzhniy O, Amiraslanov I, Tuve S, Verlinde CL, Shayakhmetov D, Stehle T, Roffler S, Lieber A (2007) Identification of CD46 binding sites within the adenovirus serotype 35 fiber knob. J Virol 81:12785–12792
PubMed CAS Google Scholar
- Warren JC, Cassimeris L (2007) The contributions of microtubule stability and dynamic instability to adenovirus nuclear localization efficiency. Cell Motil Cytoskeleton 64:675–689
PubMed CAS Google Scholar
- Warren JC, Rutkowski A, Cassimeris L (2006) Infection with replication-deficient adenovirus induces changes in the dynamic instability of host cell microtubules. Mol Biol Cell 17:3557–3568
PubMed CAS Google Scholar
- Weber JM (1995) Adenovirus endopeptidase and its role in virus infection. Curr Top Microbiol Immunol 199(Pt 1):227–235
PubMed CAS Google Scholar
- Webster A, Russell WC, Kemp GD (1989) Characterization of the adenovirus proteinase: development and use of a specific peptide assay. J Gen Virol 70(Pt 12):3215–3223
PubMed CAS Google Scholar
- Webster A, Hay RT, Kemp G (1993) The adenovirus protease is activated by a virus-coded disulphide-linked peptide. Cell 72:97–104
PubMed CAS Google Scholar
- Wickham TJ, Mathias P, Cheresh DA, Nemerow GR (1993) Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 73:309–319
PubMed CAS Google Scholar
- Wickham TJ, Filardo EJ, Cheresh DA, Nemerow GR (1994) Integrin alpha v beta 5 selectively promotes adenovirus mediated cell membrane permeabilization. J Cell Biol 127:257–264
PubMed CAS Google Scholar
- Wiethoff CM, Wodrich H, Gerace L, Nemerow GR (2005) Adenovirus protein VI mediates membrane disruption following capsid disassembly. J Virol 79:1992–2000
PubMed CAS Google Scholar
- Wodrich H, Guan T, Cingolani G, Von Seggern D, Nemerow G, Gerace L (2003) Switch from capsid protein import to adenovirus assembly by cleavage of nuclear transport signals. Embo J 22:6245–6255
PubMed CAS Google Scholar
- Wohlfart C (1988) Neutralization of adenoviruses: kinetics, stoichiometry, and mechanisms. J Virol 62:2321–2328
PubMed CAS Google Scholar
- Wohlfart CE, Svensson UK, Everitt E (1985) Interaction between HeLa cells and adenovirus type 2 virions neutralized by different antisera. J Virol 56:896–903
PubMed CAS Google Scholar
- Wu E, Nemerow GR (2004) Virus yoga: the role of flexibility in virus host cell recognition. Trends Microbiol 12:162–169
PubMed CAS Google Scholar
- Wu E, Pache L, Von Seggern DJ, Mullen TM, Mikyas Y, Stewart PL, Nemerow GR (2003) Flexibility of the adenovirus fiber is required for efficient receptor interaction. J Virol 77:7225–7235
PubMed CAS Google Scholar
- Wu E, Trauger SA, Pache L, Mullen TM, von Seggern DJ, Siuzdak G, Nemerow GR (2004) Membrane cofactor protein is a receptor for adenoviruses associated with epidemic keratoconjunctivitis. J Virol 78:3897–3905
PubMed CAS Google Scholar
- Xie J, Chiang L, Contreras J, Wu K, Garner JA, Medina-Kauwe L, Hamm-Alvarez SF (2006) Novel fiber-dependent entry mechanism for adenovirus serotype 5 in lacrimal acini. J Virol 80:11833–11851
PubMed CAS Google Scholar
- Yoshimura A (1985) Adenovirus-induced leakage of co-endocytosed macromolecules into the cytosol. Cell Struct Funct 10:391–404
PubMed CAS Google Scholar
- Zinn KR, Szalai AJ, Stargel A, Krasnykh V, Chaudhuri TR (2004) Bioluminescence imaging reveals a significant role for complement in liver transduction following intravenous delivery of adenovirus. Gene Ther 11:1482–1486
PubMed CAS Google Scholar
- Zubieta C, Schoehn G, Chroboczek J, Cusack S (2005) The structure of the human adenovirus 2 penton. Mol Cell 17:121–135
PubMed CAS Google Scholar
- Zubieta C, Blanchoin L, Cusack S (2006) Structural and biochemical characterization of a human adenovirus 2/12 penton base chimera. FEBS J 273:4336–4345
PubMed CAS Google Scholar