Role of NK Cells in Influenza Infection (original) (raw)
References
Abdul-Careem MF, Mian MF, Yue G, Gillgrass A, Chenoweth MJ, Barra NG, Chew MV, Chan T, Al-Garawi AA, Jordana M, Ashkar AA (2012) Critical role of natural killer cells in lung immunopathology during influenza infection in mice. J Infect Dis 206:167–177. doi:10.1093/infdis/jis340 ArticleCASPubMed Google Scholar
Achdout H, Meningher T, Hirsh S, Glasner A, Bar-On Y, Gur C, Porgador A, Mendelson M, Mandelboim M, Mandelboim O (2010) Killing of avian and Swine influenza virus by natural killer cells. J Virol 84:3993–4001. doi:10.1128/JVI.02289-09 ArticleCASPubMed CentralPubMed Google Scholar
Ali SA, Rees RC, Oxford J (1984) Modulation of human natural killer cytotoxicity by influenza virus and its subunit protein. Immunology 52:687–695 CASPubMed CentralPubMed Google Scholar
Arnon TI, Achdout H, Lieberman N, Gazit R, Gonen-Gross T, Katz G, Bar-Ilan A, Bloushtain N, Lev M, Joseph A, Kedar E, Porgador A, Mandelboim O (2004) The mechanisms controlling the recognition of tumor- and virus-infected cells by NKp46. Blood 103:664–672. doi:10.1182/blood-2003-05-1716 ArticleCASPubMed Google Scholar
Bar-On Y, Glasner A, Meningher T, Achdout H, Gur C, Lankry D, Vitenshtein A, Meyers AFA, Mandelboim M, Mandelboim O (2013) Neuraminidase-mediated, NKp46-dependent immune-evasion mechanism of influenza viruses. Cell Rep 3:1044–1050. doi:10.1016/j.celrep.2013.03.034
Bar-On Y, Seidel E, Tsukerman P, Mandelboim M, Mandelboim O (2014) Influenza virus uses its neuraminidase protein to evade the recognition of two activating NK cell receptors. J Infect Dis. doi:10.1093/infdis/jiu094 PubMed Google Scholar
Beli E, Clinthorne JF, Duriancik DM, Hwang I, Kim S, Gardner EM (2011) Natural killer cell function is altered during the primary response of aged mice to influenza infection. Mech Ageing Dev 132:503–510 ArticleCASPubMed CentralPubMed Google Scholar
Bjorkstrom NK, Ljunggren HG, Sandberg JK (2010) CD56 negative NK cells: origin, function, and role in chronic viral disease. Trends Immunol 31:401–406. doi:10.1016/j.it.2010.08.003 ArticlePubMed Google Scholar
Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, Carson WE, Caligiuri MA (2001) Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 97:3146–3151 ArticleCASPubMed Google Scholar
Dong L, Mori I, Hossain MJ, Kimura Y (2000) The senescence-accelerated mouse shows aging-related defects in cellular but not humoral immunity against influenza virus infection. J Infect Dis 182:391–396. doi:10.1086/315727 ArticleCASPubMed Google Scholar
Fox A, Le NM, Horby P, van Doorn HR, Nguyen VT, Nguyen HH, Nguyen TC, Vu DP, Nguyen MH, Diep NT, Bich VT, Huong HT, Taylor WR, Farrar J, Wertheim H, Nguyen VK (2012) Severe pandemic H1N1 2009 infection is associated with transient NK and T deficiency and aberrant CD8 responses. PLoS One 7:e31535. doi:10.1371/journal.pone.0031535 ArticleCASPubMed CentralPubMed Google Scholar
Gardner EM (2005) Caloric restriction decreases survival of aged mice in response to primary influenza infection. J Gerontol A Biol Sci Med Sci 60:688–694 ArticlePubMed Google Scholar
Gazit R, Gruda R, Elboim M, Arnon TI, Katz G, Achdout H, Hanna J, Qimron U, Landau G, Greenbaum E, Zakay-Rones Z, Porgador A, Mandelboim O (2006) Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol 7:517–523. doi:10.1038/ni1322 ArticleCASPubMed Google Scholar
Ge N, Nishioka Y, Nakamura Y, Okano Y, Yoneda K, Ogawa H, Sugita A, Yanagawa H, Sone S (2004) Synthesis and secretion of interleukin-15 by freshly isolated human bronchial epithelial cells. Int Arch Allergy Immunol 135:235–242. doi:10.1159/000081309 ArticleCASPubMed Google Scholar
Glasner A, Zurunic A, Meningher T, Lenac Rovis T, Tsukerman P, Bar-On Y, Yamin R, Meyers AF, Mandeboim M, Jonjic S, Mandelboim O (2012) Elucidating the mechanisms of influenza virus recognition by Ncr1. PloS One 7:e36837. doi:10.1371/journal.pone.0036837 ArticleCASPubMed CentralPubMed Google Scholar
Ho JW, Hershkovitz O, Peiris M, Zilka A, Bar-Ilan A, Nal B, Chu K, Kudelko M, Kam YW, Achdout H, Mandelboim M, Altmeyer R, Mandelboim O, Bruzzone R, Porgador A (2008) H5-type influenza virus hemagglutinin is functionally recognized by the natural killer-activating receptor NKp44. J Virol 82:2028–2032. doi:10.1128/JVI.02065-07 ArticleCASPubMed CentralPubMed Google Scholar
Jansen CA, de Geus ED, van Haarlem DA, van de Haar PM, Londt BZ, Graham SP, Gobel TW, van Eden W, Brookes SM, Vervelde L (2013) Differential lung NK cell responses in avian influenza virus infected chickens correlate with pathogenicity. Sci Rep 3:2478. doi:10.1038/srep02478 ArticlePubMed CentralPubMed Google Scholar
Juarez-Reyes A, Noyola DE, Monsivais-Urenda A, Alvarez-Quiroga C, Gonzalez-Amaro R (2013) Influenza virus infection but not H1N1 influenza virus immunization is associated with changes in peripheral blood NK cell subset levels. Clin Vaccine Immunol 20:1291–1297. doi:10.1128/CVI.00194-13 ArticleCASPubMed CentralPubMed Google Scholar
Kumar P, Thakar MS, Ouyang W, Malarkannan S (2013) IL-22 from conventional NK cells is epithelial regenerative and inflammation protective during influenza infection. Mucosal Immunol 6:69–82. doi:10.1038/mi.2012.49 ArticleCASPubMed Google Scholar
La D, Czarnecki C, El-Gabalawy H, Kumar A, Meyers AF, Bastien N, Simonsen JN, Plummer FA, Luo M (2011) Enrichment of variations in KIR3DL1/S1 and KIR2DL2/L3 among H1N1/09 ICU patients: an exploratory study. PLoS One 6:e29200. doi:10.1371/journal.pone.0029200 ArticleCASPubMed CentralPubMed Google Scholar
Li J, Li H, Mao H, Yu M, Yang F, Feng T, Fan Y, Lu Q, Shen C, Yin Z, Mao M, Tu W (2013) Impaired NK cell antiviral cytokine response against influenza virus in small-for-gestational-age neonates. Cell Mol Immunol 10:437–443. doi:10.1038/cmi.2013.31 ArticleCASPubMed CentralPubMed Google Scholar
Liu B, Mori I, Hossain MJ, Dong L, Takeda K, Kimura Y (2004) Interleukin-18 improves the early defence system against influenza virus infection by augmenting natural killer cell-mediated cytotoxicity. J Gen Virol 85:423–428 ArticleCASPubMed Google Scholar
Manicassamy B, Manicassamy S, Belicha-Villanueva A, Pisanelli G, Pulendran B, Garcia-Sastre A (2010) Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. Proc Natl Acad Sci USA 107:11531–11536. doi:10.1073/pnas.0914994107 ArticleCASPubMed CentralPubMed Google Scholar
Mao H, Tu W, Qin G, Law HK, Sia SF, Chan PL, Liu Y, Lam KT, Zheng J, Peiris M, Lau YL (2009) Influenza virus directly infects human natural killer cells and induces cell apoptosis. J Virol 83:9215–9222. doi:10.1128/JVI.00805-09 ArticleCASPubMed CentralPubMed Google Scholar
Mendelson M, Tekoah Y, Zilka A, Gershoni-Yahalom O, Gazit R, Achdout H, Bovin NV, Meningher T, Mandelboim M, Mandelboim O, David A, Porgador A (2010) NKp46 O-glycan sequences that are involved in the interaction with hemagglutinin type 1 of influenza virus. J Virol 84:3789–3797. doi:10.1128/JVI.01815-09 ArticleCASPubMed CentralPubMed Google Scholar
Nogusa S, Ritz BW, Kassim SH, Jennings SR, Gardner EM (2008) Characterization of age-related changes in natural killer cells during primary influenza infection in mice. Mech Ageing Dev 129:223–230. doi:10.1016/j.mad.2008.01.003 ArticleCASPubMed Google Scholar
O’Brien KB, Schultz-Cherry S, Knoll LJ (2011) Parasite-mediated upregulation of NK cell-derived gamma interferon protects against severe highly pathogenic H5N1 influenza virus infection. J Virol 85:8680–8688. doi:10.1128/JVI.05142-11 ArticlePubMed CentralPubMed Google Scholar
Owen RE, Yamada E, Thompson CI, Phillipson LJ, Thompson C, Taylor E, Zambon M, Osborn HM, Barclay WS, Borrow P (2007) Alterations in receptor binding properties of recent human influenza H3N2 viruses are associated with reduced natural killer cell lysis of infected cells. J Virol 81:11170–11178. doi:10.1128/JVI.01217-07 ArticleCASPubMed CentralPubMed Google Scholar
Pommerenke C, Wilk E, Srivastava B, Schulze A, Novoselova N, Geffers R, Schughart K (2012) Global transcriptome analysis in influenza-infected mouse lungs reveals the kinetics of innate and adaptive host immune responses. PLoS One 7:e41169. doi:10.1371/journal.pone.0041169 ArticleCASPubMed CentralPubMed Google Scholar
Ritz BW, Aktan I, Nogusa S, Gardner EM (2008) Energy restriction impairs natural killer cell function and increases the severity of influenza infection in young adult male C57BL/6 mice. J Nutr 138:2269–2275. doi:10.3945/jn.108.093633 ArticleCASPubMed CentralPubMed Google Scholar
Sato K, Iwai A, Nakayama Y, Morimoto J, Takada A, Maruyama M, Kida H, Uede T, Miyazaki T (2012) Osteopontin is critical to determine symptom severity of influenza through the regulation of NK cell population. Biochem Biophys Res Commun 417:274–279. doi:10.1016/j.bbrc.2011.11.100 ArticleCASPubMed Google Scholar
Stein-Streilein J, Bennett M, Mann D, Kumar V (1983) Natural killer cells in mouse lung: surface phenotype, target preference, and response to local influenza virus infection. J Immunol 131:2699–2704 CASPubMed Google Scholar
Stein-Streilein J, Guffee J (1986) In vivo treatment of mice and hamsters with antibodies to asialo GM1 increases morbidity and mortality to pulmonary influenza infection. J Immunol 136:1435–1441 CASPubMed Google Scholar
Stein-Streilein J, Guffee J, Fan W (1988) Locally and systemically derived natural killer cells participate in defense against intranasally inoculated influenza virus. Reg Immunol 1:100–105 CASPubMed Google Scholar
Walzer T, Blery M, Chaix J, Fuseri N, Chasson L, Robbins SH, Jaeger S, Andre P, Gauthier L, Daniel L, Chemin K, Morel Y, Dalod M, Imbert J, Pierres M, Moretta A, Romagne F, Vivier E (2007) Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc Natl Acad Sci USA 104:3384–3389. doi:10.1073/pnas.0609692104 ArticleCASPubMed CentralPubMed Google Scholar
Weiss ID, Wald O, Wald H, Beider K, Abraham M, Galun E, Nagler A, Peled A (2010) IFN-gamma treatment at early stages of influenza virus infection protects mice from death in a NK cell-dependent manner. J Interferon Cytokine Res 30:439–449. doi:10.1089/jir.2009.0084 ArticleCASPubMed Google Scholar