Proteolysis of Sars-Associated Coronavirus Spike Glycoprotein (original) (raw)

References

  1. W. Li, M. J. Moore, N. Vasilieva, J. Sui, S. K. Wong, M. A. Berne, M. Somasundaran, J. L. Sullivan, K. Luzuriaga, T. C. Greenough, H. Choe, and M. Farzan, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature 426, 450–454 (2003).
    Article CAS PubMed Google Scholar
  2. Z. Y. Yang, Y. Huang, L. Ganesh, K. Leung, W. P. Kong, O. Schwartz, K. Subbarao, and G. J. Nabel, pH-Dependent entry of SARS-CoV is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN, J. Virol. 78, 5642–5650 (2004).
    Article CAS PubMed Google Scholar
  3. A. Marzi, T. Gramberg, G. Simmons, P. Moller, A. Rennekamp, M. Krumbiegel, M. Geier, J. Eisemann, N. Turza, B. Saunier, A. Steinkasserer, S. Becker, P. Bates, H. Hofmann, and S. Pohlmann, DC-SIGN and DC-SIGNR interact with Marburg virus and the S protein of SARS-CoV, J. Virol. 78, 12090–12095 (2004).
    Article CAS PubMed Google Scholar
  4. S. Jeffers, S. Tusell, L. Gillim-Ross, E. Hemmila, J. Achenbach, G. Babcock, W. Thomas, Jr., L. Thackray, M. Young, R. Mason, D. Ambrosino, D. Wentworth, J. Demartini, and K. Holmes, CD209L (L-SIGN) is a receptor for SARS-CoV, Proc. Natl. Acad. Sci. USA 101, 15748–15753 (2004).
    Article CAS PubMed Google Scholar
  5. T. Gramberg, H. Hofmann, P. Moller, P. F. Lalor, A. Marzi, M. Geier, M. Krumbiegel, T. Winkler, F. Kirchhoff, D. H. Adams, S. Becker, J. Munch, and S. Pohlmann, LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus, Virology 340, 224–236 (2005).
    Article CAS PubMed Google Scholar
  6. B. J. Bosch, B. E. Martina, R. Van Der Zee, J. Lepault, B. J. Haijema, C. Versluis, A. J. Heck, R. De Groot, A. D. Osterhaus, and P. J. Rottier, Severe acute respiratory syndrome coronavirus infection inhibition using spike protein heptad repeat-derived peptides, Proc. Natl. Acad. Sci. USA 101, 8455–8460 (2004).
    Article CAS PubMed Google Scholar
  7. S. Liu, G. Xiao, Y. Chen, Y. He, J. Niu, C. R. Escalante, H. Xiong, J. Farmar, A. K. Debnath, P. Tien, and S. Jiang, Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-CoV: implications for virus fusogenic mechanism and identification of fusion inhibitors, Lancet 363, 938–947 (2004).
    Article CAS PubMed Google Scholar
  8. B. Tripet, M. W. Howard, M. Jobling, R. K. Holmes, K. V. Holmes, and R. S. Hodges, Structural characterization of the SARS-coronavirus spike S fusion protein core, J. Biol. Chem. 279, 20836–20849 (2004).
    Article CAS PubMed Google Scholar
  9. G. Simmons, J. D. Reeves, A. J. Rennekamp, S. M. Amberg, A. J. Piefer, and P. Bates, Characterization of SARS-CoV spike glycoprotein-mediated viral entry, Proc. Natl. Acad. Sci. USA 101, 4240–4245 (2004).
    Article CAS PubMed Google Scholar
  10. M. Frana, J. Behnke, L. Sturman, and K. Holmes, Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: host-dependent differences in proteolytic cleavage and cell fusion, J. Virol. 56, 912–920 (1985).
    CAS PubMed Google Scholar
  11. C. De Haan, K. Stadler, G. Godeke, B. Bosch, and P. Rottier, Cleavage inhibition of the murine coronavirus spike protein by a furin-like enzyme affects cell-cell but not virus-cell fusion, J. Virol. 78, 6048–6054 (2004).
    Article PubMed Google Scholar
  12. H. D. Klenk, R. Rott, M. Orlich, and J. Blodorn, Activation of influenza A viruses by trypsin treatment, Virology 68, 426–439 (1975).
    Article CAS PubMed Google Scholar
  13. G. Simmons, D. N. Gosalia, A. J. Rennekamp, J. D. Reeves, S. L. Diamond, and P. Bates, Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry, Proc. Natl. Acad. Sci. USA 102, 11876–11881 (2005).
    Article CAS PubMed Google Scholar

Download references