Proteolysis of Sars-Associated Coronavirus Spike Glycoprotein (original) (raw)
References
W. Li, M. J. Moore, N. Vasilieva, J. Sui, S. K. Wong, M. A. Berne, M. Somasundaran, J. L. Sullivan, K. Luzuriaga, T. C. Greenough, H. Choe, and M. Farzan, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature 426, 450–454 (2003). ArticleCASPubMed Google Scholar
Z. Y. Yang, Y. Huang, L. Ganesh, K. Leung, W. P. Kong, O. Schwartz, K. Subbarao, and G. J. Nabel, pH-Dependent entry of SARS-CoV is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN, J. Virol. 78, 5642–5650 (2004). ArticleCASPubMed Google Scholar
A. Marzi, T. Gramberg, G. Simmons, P. Moller, A. Rennekamp, M. Krumbiegel, M. Geier, J. Eisemann, N. Turza, B. Saunier, A. Steinkasserer, S. Becker, P. Bates, H. Hofmann, and S. Pohlmann, DC-SIGN and DC-SIGNR interact with Marburg virus and the S protein of SARS-CoV, J. Virol. 78, 12090–12095 (2004). ArticleCASPubMed Google Scholar
S. Jeffers, S. Tusell, L. Gillim-Ross, E. Hemmila, J. Achenbach, G. Babcock, W. Thomas, Jr., L. Thackray, M. Young, R. Mason, D. Ambrosino, D. Wentworth, J. Demartini, and K. Holmes, CD209L (L-SIGN) is a receptor for SARS-CoV, Proc. Natl. Acad. Sci. USA 101, 15748–15753 (2004). ArticleCASPubMed Google Scholar
T. Gramberg, H. Hofmann, P. Moller, P. F. Lalor, A. Marzi, M. Geier, M. Krumbiegel, T. Winkler, F. Kirchhoff, D. H. Adams, S. Becker, J. Munch, and S. Pohlmann, LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus, Virology 340, 224–236 (2005). ArticleCASPubMed Google Scholar
B. J. Bosch, B. E. Martina, R. Van Der Zee, J. Lepault, B. J. Haijema, C. Versluis, A. J. Heck, R. De Groot, A. D. Osterhaus, and P. J. Rottier, Severe acute respiratory syndrome coronavirus infection inhibition using spike protein heptad repeat-derived peptides, Proc. Natl. Acad. Sci. USA 101, 8455–8460 (2004). ArticleCASPubMed Google Scholar
S. Liu, G. Xiao, Y. Chen, Y. He, J. Niu, C. R. Escalante, H. Xiong, J. Farmar, A. K. Debnath, P. Tien, and S. Jiang, Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-CoV: implications for virus fusogenic mechanism and identification of fusion inhibitors, Lancet 363, 938–947 (2004). ArticleCASPubMed Google Scholar
B. Tripet, M. W. Howard, M. Jobling, R. K. Holmes, K. V. Holmes, and R. S. Hodges, Structural characterization of the SARS-coronavirus spike S fusion protein core, J. Biol. Chem. 279, 20836–20849 (2004). ArticleCASPubMed Google Scholar
G. Simmons, J. D. Reeves, A. J. Rennekamp, S. M. Amberg, A. J. Piefer, and P. Bates, Characterization of SARS-CoV spike glycoprotein-mediated viral entry, Proc. Natl. Acad. Sci. USA 101, 4240–4245 (2004). ArticleCASPubMed Google Scholar
M. Frana, J. Behnke, L. Sturman, and K. Holmes, Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: host-dependent differences in proteolytic cleavage and cell fusion, J. Virol. 56, 912–920 (1985). CASPubMed Google Scholar
C. De Haan, K. Stadler, G. Godeke, B. Bosch, and P. Rottier, Cleavage inhibition of the murine coronavirus spike protein by a furin-like enzyme affects cell-cell but not virus-cell fusion, J. Virol. 78, 6048–6054 (2004). ArticlePubMed Google Scholar
H. D. Klenk, R. Rott, M. Orlich, and J. Blodorn, Activation of influenza A viruses by trypsin treatment, Virology 68, 426–439 (1975). ArticleCASPubMed Google Scholar
G. Simmons, D. N. Gosalia, A. J. Rennekamp, J. D. Reeves, S. L. Diamond, and P. Bates, Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry, Proc. Natl. Acad. Sci. USA 102, 11876–11881 (2005). ArticleCASPubMed Google Scholar