SARS-CoV, But not HCoV-NL63, Utilizes Cathepsins to Infect Cells: Viral Entry (original) (raw)

Chapter PDF

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. C. L. Yeager, R. A. Ashmun, R. K. Williams, C. B. Cardellichio, L. H. Shapiro, S. T. Look, and K. V. Holmes, Human aminopeptidase N is a receptor for human coronavirus 229E, Nature 357:420–422 (1992).
    Article CAS PubMed Google Scholar
  2. D. B. Tresnan and K. V. Holmes, Feline aminopeptidase N is a receptor for all group I coronaviruses, Adv. Exp. Med. Biol. 440, 69–75 (1998).
    CAS PubMed Google Scholar
  3. W. Li, M. J. Moore, N. Vasilieva, J. Sui, S. K. Wong, M. A. Berne, M. Somasundaran, J. L. Sullivan, C. Luzeriaga, T. C. Greenough, H. Choe, and M. Farzan, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature 426, 450–454 (2003).
    Article CAS PubMed Google Scholar
  4. P. Wang, J. Chen, A. Zheng, Y. Nie, X. Shi, W. Wang, G. Wang, M. Luo, H. Liu, L. Tan, X. Song, Z. Wang, X. Yin, X. Qu, X. Wang, T. Qing, M. Ding, and H. Deng, Expression cloning of functional receptor used by SARS coronavirus, Biochem. Biophys. Res. Commun. 315, 439–444 (2004).
    Article CAS PubMed Google Scholar
  5. H. Hofmann, K. Pyrc, L. van der Hoek, M. Geier, B. Berkhout, and S. Pohlmann, Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry, Proc. Natl. Acad. Sci. USA 16, 7988–7993 (2005).
    Article Google Scholar
  6. S. K. Wong, W. Li, M. J. Moore, H. Choe, and M. Farzan, A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2, J. Biol. Chem. 279, 3197–3201 (2004).
    Article CAS PubMed Google Scholar
  7. A. Bonavia, B. D. Zelus, D. E. Wentworth, P. J. Talbot, and K. V. Holmes, Identification of a receptor-binding domain of the spike glycoprotein of human coronavirus HCoV-229E, J. Virol. 77, 2530–2538 (2003).
    Article CAS PubMed Google Scholar
  8. D. S. Dimitrov, Virus entry: molecular mechanisms and biomedical applications, Nat. Rev. Microbiol. 2, 109–122 (2004).
    Article PubMed Google Scholar
  9. J. W. Golden, J. Linke, S. Schmechel, K. Thoemke, and L. A. Schiff, Addition of exogenous protease facilitates reovirus infection in many restrictive cells, J. Virol. 76, 7430–7443 (2002).
    Article CAS PubMed Google Scholar
  10. D. H. Ebert, J. Deussing, C. Peters, and T. S. Dermody, Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells, J. Biol. Chem. 277, 24609–24617 (2002).
    Article CAS PubMed Google Scholar
  11. J. Jane-Valbuena, L. A. Breun, L. A. Schiff, and M. L. Nibert, Sites and determinants of early cleavages in the proteolytic processing pathway of reovirus surface protein sigma 3, J. Virol. 76, 5184–5197 (2002).
    Article CAS PubMed Google Scholar
  12. G. S. Baer, D. H. Ebert, C. J. Chung, A. H. Erickson, and T. S. Dermody, Mutant cells selected during persistent reovirus infection do not express mature cathepsin L and do not support reovirus disassembly, J. Virol. 73, 9532–9543 (1999).
    CAS PubMed Google Scholar
  13. K. Chandran, N. J. Sullivan, U. Felbor, S. P. Whelan, and J. M. Cunningham, Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection, Science 308, 1643–1645 (2005).
    Article CAS PubMed Google Scholar
  14. G. Simmons, J. D. Reeves, A. J. Rennekamp, S. M. Amberg, A. J. Piefer, and P. Bates, Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry, Proc. Natl. Acad. Sci. USA 101, 4240–4245 (2004).
    Article CAS PubMed Google Scholar

Download references

Author information

Authors and Affiliations

  1. Harvard Medical School, Boston, Massachusetts, USA
    I-Chueh Huang
  2. Utrecht University, Utrecht, The Netherlands
    Berend Jan Bosch
  3. New England Primate Research Center, 01772, Southborough, Massachusetts, USA
    Dr Wenhui Li
  4. New England Primate Research Center, 01772, Southborough, Massachusetts, USA
    Dr Michael Farzan
  5. Utrecht University, Utrecht, The Netherlands
    Peter M. Rottier
  6. Harvard Medical School, Boston, Massachusetts, USA
    Dr Hyeryun Choe

Authors

  1. I-Chueh Huang
    You can also search for this author inPubMed Google Scholar
  2. Berend Jan Bosch
    You can also search for this author inPubMed Google Scholar
  3. Dr Wenhui Li
    You can also search for this author inPubMed Google Scholar
  4. Dr Michael Farzan
    You can also search for this author inPubMed Google Scholar
  5. Peter M. Rottier
    You can also search for this author inPubMed Google Scholar
  6. Dr Hyeryun Choe
    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Pediatrics, University of Iowa, 52242, Iowa City, IA, USA
    Stanley Perlman M.D., Ph.D.
  2. Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333, Aurora, CO, USA
    Kathryn V. Holmes Ph.D.

Rights and permissions

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Huang, IC., Bosch, B.J., Li, W., Farzan, M., Rottier, P.M., Choe, H. (2006). SARS-CoV, But not HCoV-NL63, Utilizes Cathepsins to Infect Cells: Viral Entry. In: Perlman, S., Holmes, K.V. (eds) The Nidoviruses. Advances in Experimental Medicine and Biology, vol 581. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33012-9\_60

Download citation

Publish with us