Long Noncontractile Tail Machines of Bacteriophages (original) (raw)
Abuladze NK, Gingery M, Tsai J et al (1994) Tail length determination in bacteriophage T4. Virology 199:301–310 ArticlePubMedCAS Google Scholar
Ackermann HW (2007a) 5500 Phages examined in the electron microscope. Arch Virol 152:227–243 ArticlePubMedCAS Google Scholar
Ackermann HW (2007b) Bacteriophages: tailed, Encyclopedia of life sciences. Wiley, New York Google Scholar
Altschul SF, Koonin EV (1998) Iterated profile searches with PSI-BLAST – a tool for discovery in protein databases. Trends Biochem Sci 23:444–447 ArticlePubMedCAS Google Scholar
Ambroggio XI, Rees DC, Deshaies RJ (2004) JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol 2:E2 ArticlePubMed Google Scholar
Baptista C, Santos MA, Sao-Jose C (2008) Phage SPP1 reversible adsorption to Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane receptor YueB. J Bacteriol 190:4989–4996 ArticlePubMedCAS Google Scholar
Bebeacua C, Bron P, Lai L et al (2010) Structure and molecular assignment of lactococcal phage TP901-1 baseplate. J Biol Chem 285:39079–39086 ArticlePubMedCAS Google Scholar
Berrier C, Bonhivers M, Letellier L et al (2000) High-conductance channel induced by the interaction of phage lambda with its receptor maltoporin. FEBS Lett 476:129–133 ArticlePubMedCAS Google Scholar
Boulanger P, Jacquot P, Plancon L et al (2008) Phage T5 straight tail fiber is a multifunctional protein acting as a tape measure and carrying fusogenic and muralytic activities. J Biol Chem 283:13556–13564 ArticlePubMedCAS Google Scholar
Bradley P, Cowen L, Menke M et al (2001) BETAWRAP: successful prediction of parallel beta-helices from primary sequence reveals an association with many microbial pathogens. Proc Natl Acad Sci USA 98:14819–14824 ArticlePubMedCAS Google Scholar
Cardarelli L, Pell LG, Neudecker P et al (2010) Phages have adapted the same protein fold to fulfill multiple functions in virion assembly. Proc Natl Acad Sci USA 107:14384–14389 ArticlePubMedCAS Google Scholar
Casjens S, Hendrix R (1974b) Comments on the arrangement of the morphogenetic genes of bacteriophage lambda. J Mol Biol 90:20–25 ArticlePubMedCAS Google Scholar
Casjens SR, Hendrix RW (1974a) Locations and amounts of major structural proteins in bacteriophage lambda. J Mol Biol 88:535–545 ArticlePubMedCAS Google Scholar
Christie GE, Temple LM, Bartlett BA et al (2002) Programmed translational frameshift in the bacteriophage P2 FETUD tail gene operon. J Bacteriol 184:6522–6531 ArticlePubMedCAS Google Scholar
Edmonds L, Liu A, Kwan JJ et al (2007) The NMR structure of the gpU tail-terminator protein from bacteriophage lambda: identification of sites contributing to Mg(II)-mediated oligomerization and biological function. J Mol Biol 365:175–186 ArticlePubMedCAS Google Scholar
Effantin G, Boulanger P, Neumann E et al (2006) Bacteriophage T5 structure reveals similarities with HK97 and T4 suggesting evolutionary relationships. J Mol Biol 361:993–1002 ArticlePubMedCAS Google Scholar
Elliott J, Arber W (1978) E. coli K-12 pel mutants, which block phage lambda DNA injection, coincide with ptsM, which determines a component of a sugar transport system. Mol Gen Genet 161:1–8 ArticlePubMedCAS Google Scholar
Feucht A, Schmid A, Benz R et al (1990) Pore formation associated with the tail-tip protein pb2 of bacteriophage T5. J Biol Chem 265:18561–18567 PubMedCAS Google Scholar
Finn RD, Mistry J, Tate J et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222 ArticlePubMedCAS Google Scholar
Fortier LC, Bransi A, Moineau S (2006) Genome sequence and global gene expression of Q54, a new phage species linking the 936 and c2 phage species of Lactococcus lactis. J Bacteriol 188:6101–6114 ArticlePubMedCAS Google Scholar
Fraser JS, Maxwell KL, Davidson AR (2007) Immunoglobulin-like domains on bacteriophage: weapons of modest damage? Curr Opin Microbiol 10:382–387 ArticlePubMedCAS Google Scholar
Fraser JS, Yu Z, Maxwell KL et al (2006) Ig-like domains on bacteriophages: a tale of promiscuity and deceit. J Mol Biol 359:496–507 ArticlePubMedCAS Google Scholar
Grundy FJ, Howe MM (1985) Morphogenetic structures present in lysates of amber mutants of bacteriophage Mu. Virology 143:485–504 ArticlePubMedCAS Google Scholar
Heller K, Braun V (1982) Polymannose O-antigens of Escherichia coli, the binding sites for the reversible adsorption of bacteriophage T5+ via the L-shaped tail fibers. J Virol 41:222–227 PubMedCAS Google Scholar
Heller KJ, Schwarz H (1985) Irreversible binding to the receptor of bacteriophages T5 and BF23 does not occur with the tip of the tail. J Bacteriol 162:621–625 PubMedCAS Google Scholar
Heller KJ (1984) Identification of the phage gene for host receptor specificity by analyzing hybrid phages of T5 and BF23. Virology 139:11–21 ArticlePubMedCAS Google Scholar
Hendrix RW, Duda RL (1992) Bacteriophage lambda PaPa: not the mother of all lambda phages. Science 258:1145–1148 ArticlePubMedCAS Google Scholar
Hendrix RW, Smith MC, Burns RN et al (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci USA 96:2192–2197 ArticlePubMedCAS Google Scholar
Inamdar MM, Gelbart WM, Phillips R (2006) Dynamics of DNA ejection from bacteriophage. Biophys J 91:411–420 ArticlePubMedCAS Google Scholar
Jeembaeva M, Castelnovo M, Larsson F et al (2008) Osmotic pressure: resisting or promoting DNA ejection from phage? J Mol Biol 381:310–323 ArticlePubMedCAS Google Scholar
Juhala RJ, Ford ME, Duda RL et al (2000) Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J Mol Biol 299:27–51 ArticlePubMedCAS Google Scholar
Kageyama Y, Murayama M, Onodera T et al (2009) Observation of the membrane binding activity and domain structure of gpV, which comprises the tail spike of bacteriophage P2. Biochemistry 48:10129–10135 ArticlePubMedCAS Google Scholar
Katsura I (1976) Morphogenesis of bacteriophage lambda tail. Polymorphism in the assembly of the major tail protein. J Mol Biol 107:307–326 ArticlePubMedCAS Google Scholar
Katsura I (1981) Structure and function of the major tail protein of bacteriophage lambda. Mutants having small major tail protein molecules in their virion. J Mol Biol 146:493–512 ArticlePubMedCAS Google Scholar
Katsura I (1983) Tail assembly and injection. In: Hendrix RW et al (eds) Lambda II. Cold Spring Harbor, New York Google Scholar
Katsura I (1987) Determination of bacteriophage lambda tail length by a protein ruler. Nature 327:73–75 ArticlePubMedCAS Google Scholar
Katsura I, Kuhl PW (1975) Morphogenesis of the tail of bacteriophage lambda. III. Morphogenetic pathway. J Mol Biol 91:257–273 ArticlePubMedCAS Google Scholar
Katsura I, Hendrix RW (1984) Length determination in bacteriophage lambda tails. Cell 39:691–698 ArticlePubMedCAS Google Scholar
Katsura I, Tsugita A (1977) Purification and characterization of the major protein and the terminator protein of the bacteriophage lambda tail. Virology 76:129–145 ArticlePubMedCAS Google Scholar
Kanamaru S, Ishiwata Y, Suzuki T et al (2005) Control of bacteriophage T4 tail lysozyme activity during the infection process. J Mol Biol 346:1013–1020 ArticlePubMedCAS Google Scholar
Kenny JG, McGrath S, Fitzgerald GF et al (2004) Bacteriophage Tuc 2009 encodes a tail-associated cell wall-degrading activity. J Bacteriol 186:3480–3491 ArticlePubMedCAS Google Scholar
Kondou Y, Kitazawa D, Takeda S et al (2005) Structure of the central hub of bacteriophage Mu baseplate determined by X-ray crystallography of gp44. J Mol Biol 352:976–985 ArticlePubMedCAS Google Scholar
Konopa G, Taylor K (1979) Coliphage lambda ghosts obtained by osmotic shock or LiCl treatment are devoid of J- and H-gene products. J Gen Virol 43:729–733 ArticlePubMedCAS Google Scholar
Lang AS, Taylor TA, Beatty JT (2002) Evolutionary implications of phylogenetic analyses of the gene transfer agent (GTA) of Rhodobacter capsulatus. J Mol Evol 55:534–543 ArticlePubMedCAS Google Scholar
Lengyel JA, Goldstein RN, Marsh M et al (1974) Structure of the bacteriophage P2 tail. Virology 62:161–174 ArticlePubMedCAS Google Scholar
Leiman PG, Basler M, Ramagopal UA et al (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci USA 106:4154–4159 ArticlePubMedCAS Google Scholar
Leiman PG, Shneider MM, Mesyanzhinov VV et al (2006) Evolution of bacteriophage tails: structure of T4 gene product 10. J Mol Biol 358:912–921 ArticlePubMedCAS Google Scholar
Levin ME, Hendrix RW, Casjens SR (1993) A programmed translational frameshift is required for the synthesis of a bacteriophage lambda tail assembly protein. J Mol Biol 234:124–139 ArticlePubMedCAS Google Scholar
Loessner MJ, Inman RB, Lauer P et al (2000) Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Mol Microbiol 35:324–340 ArticlePubMedCAS Google Scholar
Mc Grath S, Neve H, Seegers JF et al (2006) Anatomy of a lactococcal phage tail. J Bacteriol 188:3972–3982 ArticlePubMedCAS Google Scholar
Moak M, Molineux IJ (2000) Role of the Gp16 lytic transglycosylase motif in bacteriophage T7 virions at the initiation of infection. Mol Microbiol 37:345–355 ArticlePubMedCAS Google Scholar
Moak M, Molineux IJ (2004) Peptidoglycan hydrolytic activities associated with bacteriophage virions. Mol Microbiol 51:1169–1183 ArticlePubMedCAS Google Scholar
Montag D, Henning U (1987) An open reading frame in the Escherichia coli bacteriophage lambda genome encodes a protein that functions in assembly of the long tail fibers of bacteriophage T4. J Bacteriol 169:5884–5886 PubMedCAS Google Scholar
Montag D, Schwarz H, Henning U (1989) A component of the side tail fiber of Escherichia coli bacteriophage lambda can functionally replace the receptor-recognizing part of a long tail fiber protein of the unrelated bacteriophage T4. J Bacteriol 171:4378–4384 PubMedCAS Google Scholar
Murialdo H, Siminovitch L (1972) The morphogenesis of bacteriophage lambda. IV. Identification of gene products and control of the expression of the morphogenetic information. Virology 48:785–823 ArticlePubMedCAS Google Scholar
Panja D, Molineux IJ (2010) Dynamics of bacteriophage genome ejection in vitro and in vivo. Phys Biol 7:045006 ArticlePubMed Google Scholar
Parker ML, Eiserling FA (1983) Bacteriophage SPO1 structure and morphogenesis. I. Tail structure and length regulation. J Virol 46:239–249 PubMedCAS Google Scholar
Pedersen M, Ostergaard S, Bresciani J et al (2000) Mutational analysis of two structural genes of the temperate lactococcal bacteriophage TP901-1 involved in tail length determination and baseplate assembly. Virology 276:315–328 ArticlePubMedCAS Google Scholar
Pell LG, Gasmi-Seabrook GM, Morais M et al (2010) The solution structure of the C-terminal Ig-like domain of the bacteriophage λ tail tube protein. J Mol Biol 403:468–479 ArticlePubMedCAS Google Scholar
Pell LG, Kanelis V, Donaldson LW et al (2009b) The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci USA 106:4160–4165 ArticlePubMedCAS Google Scholar
Pell LG, Liu A, Edmonds L et al (2009a) The X-ray crystal structure of the phage lambda tail terminator protein reveals the biologically relevant hexameric ring structure and demonstrates a conserved mechanism of tail termination among diverse long-tailed phages. J Mol Biol 389:938–951 ArticlePubMedCAS Google Scholar
Plancon L, Janmot C, le Maire M et al (2002) Characterization of a high-affinity complex between the bacterial outer membrane protein FhuA and the phage T5 protein pb5. J Mol Biol 318:557–569 ArticlePubMedCAS Google Scholar
Plisson C, White HE, Auzat I et al (2007) Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection. EMBO J 26:3720–3728 ArticlePubMedCAS Google Scholar
Piuri M, Hatfull GF (2006) A peptidoglycan hydrolase motif within the mycobacteriophage TM4 tape measure protein promotes efficient infection of stationary phase cells. Mol Microbiol 62:1569–1585 ArticlePubMedCAS Google Scholar
Roessner CA, Struck DK, Ihler GM (1983) Morphology of complexes formed between bacteriophage lambda and structures containing the lambda receptor. J Bacteriol 153:1528–1534 PubMedCAS Google Scholar
Roessner CA, Ihler GM (1986) Formation of transmembrane channels in liposomes during injection of lambda DNA. J Biol Chem 261:386–390 PubMedCAS Google Scholar
Roessner CA, Ihler GM (1984) Proteinase sensitivity of bacteriophage lambda tail proteins gpJ and pH in complexes with the lambda receptor. J Bacteriol 157:165–170 PubMedCAS Google Scholar
Ricagno S, Campanacci V, Blangy S et al (2006) Crystal structure of the receptor-binding protein head domain from Lactococcus lactis phage bIL170. J Virol 80:9331–9335 ArticlePubMedCAS Google Scholar
Rigden DJ, Jedrzejas MJ, Galperin MY (2003) Amidase domains from bacterial and phage autolysins define a family of gamma-D, L-glutamate-specific amidohydrolases. Trends Biochem Sci 28:230–234 ArticlePubMedCAS Google Scholar
Saigo K (1975) Tail–DNA connection and chromosome structure in bacteriophage T5. Virology 68:154–165 ArticlePubMedCAS Google Scholar
Samsonov VV, Sineoky SP (2002) DcrA and dcrB Escherichia coli genes can control DNA injection by phages specific for BtuB and FhuA receptors. Res Microbiol 153:639–646 ArticlePubMedCAS Google Scholar
Sao-Jose C, Baptista C, Santos MA (2004) Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1. J Bacteriol 186:8337–8346 ArticlePubMedCAS Google Scholar
Sao-Jose C, Lhuillier S, Lurz R et al (2006) The ectodomain of the viral receptor YueB forms a fiber that triggers ejection of bacteriophage SPP1 DNA. J Biol Chem 281:11464–11470 ArticlePubMedCAS Google Scholar
Scandella D, Arber W (1974) An Escherichia coli mutant which inhibits the injection of phage lambda DNA. Virology 58:504–513 ArticlePubMedCAS Google Scholar
Schwartz M (1975) Reversible interaction between coliphage lambda and its receptor protein. J Mol Biol 99:185–201 ArticlePubMedCAS Google Scholar
Sciara G, Bebeacua C, Bron P et al (2010) Structure of lactococcal phage p2 baseplate and its mechanism of activation. Proc Natl Acad Sci USA 107:6852–6857 ArticlePubMedCAS Google Scholar
Scandella D, Arber W (1976) Phage lambda DNA injection into Escherichia coli pel-mutants is restored by mutations in phage genes V or H. Virology 69:206–215 ArticlePubMedCAS Google Scholar
Shao Y, Wang IN (2008) Bacteriophage adsorption rate and optimal lysis time. Genetics 180:471–482 ArticlePubMed Google Scholar
Siponen M, Sciara G, Villion M et al (2009) Crystal structure of ORF12 from Lactococcus lactis phage p2 identifies a tape measure protein chaperone. J Bacteriol 191:728–734 ArticlePubMedCAS Google Scholar
Smith ML, Avanigadda LN, Liddell PW et al (2010) Identification of the J and K genes in the bacteriophage Mu genome sequence. FEMS Microbiol Lett 313:29–32 ArticlePubMedCAS Google Scholar
Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248 ArticlePubMed Google Scholar
Spinelli S, Campanacci V, Blangy S et al (2006) Modular structure of the receptor binding proteins of Lactococcus lactis phages. The RBP structure of the temperate phage TP901-1. J Biol Chem 281:14256–14262 ArticlePubMedCAS Google Scholar
Sudiarta IP, Fukushima T, Sekiguchi J (2010) Bacillus subtilis CwlP of the SP-{beta} prophage has two novel peptidoglycan hydrolase domains, muramidase and cross-linkage digesting DD-endopeptidase. J Biol Chem 285:41232–41243 ArticlePubMedCAS Google Scholar
Suzuki H, Yamada S, Toyama Y et al (2010) The C-terminal domain is sufficient for host-binding activity of the Mu phage tail-spike protein. Biochim Biophys Acta 1804:1738–1742 PubMedCAS Google Scholar
Tavares P, Lurz R, Stiege A et al (1996) Sequential headful packaging and fate of the cleaved DNA ends in bacteriophage SPP1. J Mol Biol 264:954–967 ArticlePubMedCAS Google Scholar
Thomas JO (1974) Chemical linkage of the tail to the right-end of bacteriophage lambda DNA. J Mol Biol 87:1–10 ArticlePubMedCAS Google Scholar
Thomas JO (1978) Altered arrangement of the DNA in injection-defective lambda bacteriophage. J Mol Biol 123:149–161 ArticlePubMedCAS Google Scholar
Tsui LC, Hendrix RW (1983) Proteolytic processing of phage lambda tail protein gpH: timing of the cleavage. Virology 125:257–264 ArticlePubMedCAS Google Scholar
van Raaij MJ, Schoehn G, Burda MR et al (2001) Crystal structure of a heat and protease-stable part of the bacteriophage T4 short tail fibre. J Mol Biol 314:1137–1146 ArticlePubMed Google Scholar
Veesler D, Robin G, Lichiere J et al (2010) Crystal structure of bacteriophage SPP1 distal tail protein (gp19.1): a baseplate hub paradigm in gram-positive infecting phages. J Biol Chem 285:36666–36673 ArticlePubMedCAS Google Scholar
Vegge CS, Brondsted L, Neve H et al (2005) Structural characterization and assembly of the distal tail structure of the temperate lactococcal bacteriophage TP901-1. J Bacteriol 187:4187–4197 ArticlePubMedCAS Google Scholar
Vianelli A, Wang GR, Gingery M et al (2000) Bacteriophage T4 self-assembly: localization of gp3 and its role in determining tail length. J Bacteriol 182:680–688 ArticlePubMedCAS Google Scholar
Walker JE, Auffret AD, Carne A et al (1982) Solid-phase sequence analysis of polypeptides eluted from polyacrylamide gels. An aid to interpretation of DNA sequences exemplified by the Escherichia coli unc operon and bacteriophage lambda. Eur J Biochem 123:253–260 ArticlePubMedCAS Google Scholar
Wietzorrek A, Schwarz H, Herrmann C et al (2006) The genome of the novel phage Rtp, with a rosette-like tail tip, is homologous to the genome of phage T1. J Bacteriol 188:1419–1436 ArticlePubMedCAS Google Scholar
Williams N, Fox DK, Shea C et al (1986) Pel, the protein that permits lambda DNA penetration of Escherichia coli, is encoded by a gene in ptsM and is required for mannose utilization by the phosphotransferase system. Proc Natl Acad Sci USA 83:8934–8938 ArticlePubMedCAS Google Scholar
Xu J (2001) A conserved frameshift strategy in dsDNA long tailed bacteriophages. University of Pittsburgh, Pittsburgh, PA Google Scholar
Zimmer M, Sattelberger E, Inman RB et al (2003) Genome and proteome of Listeria monocytogenes phage PSA: an unusual case for programmed + 1 translational frameshifting in structural protein synthesis. Mol Microbiol 50:303–317 ArticlePubMedCAS Google Scholar
Zweig M, Cummings DJ (1973) Cleavage of head and tail proteins during bacteriophage T5 assembly: selective host involvement in the cleavage of a tail protein. J Mol Biol 80:505–518 ArticlePubMedCAS Google Scholar