Automated Structure Solution with the PHENIX Suite (original) (raw)

References

  1. Page, R., Grzechnik, S. K., Canaves, J. M., Spraggon, G., Kreusch, A., Kuhn, P., Stevens, R. C., and Lesley, S. A. (2003) Shotgun crystallization strategy for structural genomics: an optimized two-tiered crystallization screen against the Thermotoga maritima proteome. Acta Cryst. D59, 1028–1037.
    CAS Google Scholar
  2. Snell, G., Cork, C., Nordmeyer, R., Cornell, E., Meigs, G., Yegian, D., Jaklevic, J., Jin, J., Stevens, R. C., and Earnest, T. (2004) Automated sample mounting and alignment system for biological crystallography at a synchrotron source. Structure 12, 537–545.
    Article CAS PubMed Google Scholar
  3. Adams, P. D., Grosse-Kunstleve, R. W., and Brunger, A. T. (2003) Computational aspects of high throughput crystallographic macromolecular structure determination. Methods Biochem. Anal. 44, 75–87.
    CAS PubMed Google Scholar
  4. Terwilliger, T. C., and Berendzen, J. (1999) Automated MAD and MIR structure solution. Acta Cryst. D55, 849–861.
    CAS Google Scholar
  5. de la Fortelle, E., and Bricogne, G. (1997) Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Meth. Enzymol. 276, 472–494.
    Article Google Scholar
  6. Brunzelle, J. S., Shafaee, P., Yang, X., Weigand, S., Ren, Z., and Anderson, W. F. (2003) Automated crystallographic system for high throughput protein structure determination. Acta Cryst. D59, 1138–1144.
    CAS Google Scholar
  7. Schneider, T. R., and Sheldrick, G. M. (2002) Substructure solution with SHELXD. Acta Cryst. D58, 1772–1779.
    CAS Google Scholar
  8. Ness, S. R., de Graaff, R. A., Abrahams, J. P., and Pannu, N. S. (2004) CRANK: new methods for automated macromolecular crystal structure solution. Structure 12, 1753–1761.
    Article CAS PubMed Google Scholar
  9. Holton, J., and Alber, T. (2004) Automated protein crystal structure determination using ELVES. Proc. Natl. Acad. Sci. USA 101, 1537–1542.
    Article CAS PubMed Google Scholar
  10. Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S., and Tucker, P. A. (2005) Auto-Rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. Acta Cryst. D61, 449–457.
    CAS Google Scholar
  11. http://www.hwi.buffalo.edu/BnP/
  12. Navaza, J. (1994) AMoRe: an automated package for molecular replacement. Acta Cryst. A50, 157–163.
    CAS Google Scholar
  13. McCoy, A. J., Grosse-Kunstleve, R. W., Storoni, L. C., and Read, R. J. (2005) Likelihood-enhanced fast translation functions. Acta Cryst. D61, 458–464.
    CAS Google Scholar
  14. Kissinger, C. R., Gehlhaar, D. K., and Fogel, D. B. (1999) Rapid automated molecular replacement by evolutionary search. Acta Cryst. D55, 484–491.
    CAS Google Scholar
  15. Vagin, A., and Teplyakov, A. (2000) An approach to multi-copy search in molecular replacement. Acta Cryst. A56, 1622–1624.
    Google Scholar
  16. Perrakis, A., Morris, R., and Lamzin, V. S. (1999) Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463.
    Article CAS PubMed Google Scholar
  17. Terwilliger, T. C. (2003) Automated main-chain model building by template matching and iterative fragment extension. Acta Cryst. D59, 38–44.
    CAS Google Scholar
  18. Terwilliger, T. C. (2003) Automated side-chain model building and sequence assignment by template matching. Acta Cryst. D59, 45–49.
    CAS Google Scholar
  19. Holton, T., Ioerger, T. R., Christopher, J. A., and Sacchettini, J. C. (2000) Determining protein structure from electron-density maps using pattern matching. Acta Cryst. D56, 722–734.
    CAS Google Scholar
  20. Levitt, D. G. (2001) A new software routine that automates the fitting of protein X-ray crystallographic electron-density maps. Acta Cryst. D57, 1013–1019.
    CAS Google Scholar
  21. Jones, T. A., Zou, J. Y., Cowan, S. W., and Kjeldgaard, M. (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst. A47, 110–119.
    CAS Google Scholar
  22. McRee, D. E. (1999) XtalView/Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165.
    Article CAS PubMed Google Scholar
  23. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Cryst. D60, 2126–2132.
    CAS Google Scholar
  24. Turk, D. (1992) Weiterentwicklung eines Programms fuer Molekuelgraphik und Elektrondichte-Manipulation und seine Anwendung auf verschiedene Protein-Strukturaufklaerungen. Technical University of Munich, Munich.
    Google Scholar
  25. Adams, P. D., Grosse-Kunstleve, R. W., Hung, L.-W., Ioerger, T. R., McCoy, A. J., Moriarty, N. W., Read, R. J., Sacchettini, J. C., Sauter, N. K., and Terwilliger, T. C. (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Cryst. D58, 1948–1954.
    CAS Google Scholar
  26. Adams, P. D., Gopal, K., Grosse-Kunstleve, R. W., Hung, L. W., Ioerger, T. R., McCoy, A. J., Moriarty, N. W., Pai, R. K., Read, R. J., and Romo, T. D., et al. (2004) Recent developments in the PHENIX software for automated crystallo-graphic structure determination. J. Synchrotron Radiat. 11, 53–55.
    Article CAS PubMed Google Scholar
  27. Grosse-Kunstleve, R. W., Sauter, N. K., Moriarty, N. W., and Adams, P. D. (2002) The Computational Crystallography Toolbox: crystallographic algorithms in a reusable software framework. J. Appl. Crystallogr. 35, 126–136.
    Article CAS Google Scholar
  28. Grosse-Kunstleve, R. W., and Adams, P. D. (2003) Substructure search procedures for macromolecular structures. Acta Cryst. D59, 1966–1973.
    CAS Google Scholar
  29. Weeks, C. M., and Miller, R. (1999) Optimizing Shake-and-Bake for proteins. Acta Cryst. D55, 492–500.
    CAS Google Scholar
  30. Read, R. (2001) Pushing the boundaries of molecular replacement with maximum likelihood. Acta Cryst. D57, 1373–1382.
    CAS Google Scholar
  31. Schomaker, V., and Trueblood, K. (1968) On rigid-body motion of molecules in crystals. Acta Cryst. B24, 63.
    Google Scholar
  32. Winn, M. D., Isupov, M. N., and Murshudov, G. N. (2001) Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Cryst. D57, 122–133.
    CAS Google Scholar
  33. Brunger, A. T., Adams, P. D., and Rice, L. M. (1999) Annealing in crystallography: a powerful optimization tool. Prog. Biophys. Mol. Biol. 72, 135–155.
    Article CAS PubMed Google Scholar
  34. Rice, L. M., and Brunger, A. T. (1994) Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement. Proteins 19, 277–290.
    Article CAS PubMed Google Scholar
  35. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) The protein data bank. Nucl. Acids Res. 28, 235–242.
    Article CAS PubMed Google Scholar
  36. Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer, E. F., Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., and Tasumi, M. (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542.
    Article CAS PubMed Google Scholar
  37. Vagin, A. A., Steiner, R. A., Lebedev, A. A., Potterton, L., McNicholas, S., Long, F., and Murshudov, G. N. (2004) REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Cryst. D57, 2184–2195.
    Google Scholar
  38. Weininger, D. (1988) SMILES 1. Introduction and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31.
    CAS Google Scholar
  39. Morris, R. J., Zwart, P. H., Cohen, S., Fernandez, F. J., Kakaris, M., Kirillova, O., Vonrhein, C., Perrakis, A., and Lamzin, V. S. (2004) Breaking good resolutions with ARP/wARP. J. Synchrotr. Radiat. 11, 56–59.
    Article CAS Google Scholar
  40. Fisher, R. G., and Sweet, R. M. (1980) Treatment of diffraction data from crystals twinned by merohedry as intended. Acta Cryst. A36, 755–760.
    CAS Google Scholar
  41. Yeates, T. O. (1988) Simple statistics for intensity data from twinned specimens. Acta Cryst. A44, 142–144.
    CAS Google Scholar
  42. Yeates, T. O. (1997) Detecting and overcoming crystal twinning. Meth. Enzymol. 276, 344–358.
    Article CAS PubMed Google Scholar
  43. Lebedev, A. A., Vagin, A. A., and Murshudov, G. N. (2006) Intensity statistics in twinned crystals with examples from the PDB. Acta Cryst. D62, 83–95.
    CAS Google Scholar
  44. Hyman, J., Chen, H., Di Fiore, P. P., De Camilli, P., and Brunger, A. T. (2000) Epsin 1 undergoes nucleocytosolic shuttling and its eps15 interactor NH(2)-terminal homology (ENTH) domain, structurally similar to Armadillo and HEAT repeats, interacts with the transcription factor promyelocytic leukemia Zn(2)+ finger protein (PLZF). J. Cell Biol. 149, 537–546.
    Article CAS PubMed Google Scholar
  45. Adolph, H. W., Zwart, P., Meijers, R., Hubatsch, I., Kiefer, M., Lamzin, V., and Cedergren-Zeppezauer, E. (2000) Structural basis for substrate specificity differences of horse liver alcohol dehydrogenase isozymes. Biochemistry 39, 12885–12897.
    Article CAS PubMed Google Scholar
  46. Golovin, A., Oldfield, T. J., Tate, J. G., Velankar, S., Barton, G. J., Boutselakis, H., Dimitropoulos, D., Fillon, J., Hussain, A., and Ionides, J. M., et al. (2004) E-MSD: an integrated data resource for bioinformatics. Nucl. Acids Res. 32, D211–216.
    Article CAS PubMed Google Scholar
  47. Sutton, R. B., Ernst, J. A., and Brunger, A. T. (1999) Crystal structure of the cytosolic C2A-C2B domains of synaptotagmin III. Implications for Ca(+2)-inde-pendent snare complex interaction. J. Cell Biol. 147, 589–598.
    Article CAS PubMed Google Scholar
  48. Carr, P. D., Gustin, S. E., Church, A. P., Murphy, J. M., Ford, S. C., Mann, D. A., Woltring, D. M., Walker, I., Ollis, D. L., and Young, I. G. (2001) Structure of the complete extracellular domain of the common beta subunit of the human GM-CSF, IL-3, and IL-5 receptors reveals a novel dimer configuration. Cell 104, 291–300.
    Article CAS PubMed Google Scholar
  49. Zwart, P. (2005) Anomalous signal indicators in protein crystallography. Acta Cryst. D61, 1437–1448.
    CAS Google Scholar
  50. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., and Pannu, N. S., et al. (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Cryst. D54, 905–921.
    CAS Google Scholar
  51. Potterton, L., McNicholas, S., Krissinel, E., Gruber, J., Cowtan, K., Emsley, P., Murshudov, G. N., Cohen, S., Perrakis, A., and Noble, M. (2004) Developments in the CCP4 molecular-graphics project. Acta Cryst. D60, 2288–2294.
    CAS Google Scholar
  52. Merritt, E. A. (1999) Comparing anisotropic displacement parameters in protein structures. Acta Cryst. D55, 1997–2004.
    CAS Google Scholar

Download references