Current Status of the Polyamine Research Field (original) (raw)
Cohen SS (1998) A guide to the polyamines. Oxford University Press, New York Google Scholar
Naka Y, Watanabe K, Sagor GH, Niitsu M, Pillai MA, Kusano T, Takahashi Y (2010) Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress. Plant Physiol Biochem 48:527–533 PubMedCAS Google Scholar
Takahashi T, Kakehi JI (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot (Lond) 105:1–6 CAS Google Scholar
Williams-Ashman HG (1965) NICOLAS LOUIS VAUQUELIN (1763-1829). Invest Urol 2:605–613 PubMedCAS Google Scholar
Lee J, Michael AJ, Martynowski D, Goldsmith EJ, Phillips MA (2007) Phylogenetic diversity and the structural basis of substrate specificity in the beta/alpha-barrel fold basic amino acid decarboxylases. J Biol Chem 282:27115–27125 PubMedCAS Google Scholar
Morris DR, Pardee AB (1966) Multiple pathways of putrescine biosynthesis in Escherichia coli. J Biol Chem 241:3129–3135 PubMedCAS Google Scholar
Tabor H, Rosenthal SM, Tabor CW (1958) The biosynthesis of spermidine and spermine from putrescine and methionine. J Biol Chem 233:907–914 PubMedCAS Google Scholar
Pegg AE (2009) S-adenosylmethionine decarboxylase, vol 46. Portland, London Google Scholar
Bale S, Ealick SE (2010) Structural biology of S-adenosylmethionine decarboxylase. Amino Acids 38:451–460 PubMedCAS Google Scholar
Ikeguchi Y, Bewley M, Pegg AE (2006) Aminopropyltransferases: function, structure and genetics. J Biochem 139:1–9 PubMedCAS Google Scholar
Wu H, Min J, Ikeguchi Y, Zeng H, Dong A, Loppnau P, Pegg AE, Plotnikov AN (2007) Structure and mechanism of spermidine synthases. Biochemistry 46:8331–8339 PubMedCAS Google Scholar
Wu H, Min J, Zeng H, McCloskey DE, Ikeguchi Y, Loppnau P, Michael AJ, Pegg AE, Plotnikov AN (2008) Crystal structure of human spermine synthase: implications of substrate binding and catalytic mechanism.J Biol Chem 283:16135–16146 PubMedCAS Google Scholar
Pegg AE, Michael AJ (2010) Spermine synthase. Cell Mol Life Sci 67:113–121 PubMedCAS Google Scholar
Lee J, Sperandio V, Frantz DE, Longgood J, Camilli A, Phillips MA, Michael AJ (2009) An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. J Biol Chem 284:9899–9907 PubMedCAS Google Scholar
Tait GH (1976) A new pathway for the biosynthesis of spermidine. Biochem Soc Trans 4:610–612 PubMedCAS Google Scholar
Yamamoto S, Nagata S, Kusaba K (1993) Purification and characterization of homospermidine synthase in Acinetobacter tartarogenes ATCC 31105. J Biochem 114:45–49 PubMedCAS Google Scholar
Ober D, Harms R, Witte L, Hartmann T (2003) Molecular evolution by change of function. alkaloid-specific homospermidine synthase retained all properties of deoxyhypusine synthase except binding the eIF5A precursor protein. J Biol Chem 278:12805–12812 PubMedCAS Google Scholar
Shaw FL, Elliott KA, Kinch LN, Fuell C, Phillips MA, Michael AJ (2010) Evolution and multifarious horizontal transfer of an alternative biosynthetic pathway for the alternative polyamine sym-homospermidine.J Biol Chem 285:14711–14723 PubMedCAS Google Scholar
Oshima T (2007) Unique polyamines produced by an extreme thermophile Thermus thermophilus. Amino Acids 33:367–372 PubMedCAS Google Scholar
Terui Y, Ohnuma M, Hiraga K, Kawashima E, Oshima T (2005) Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile. Biochem J 388:427–433 PubMedCAS Google Scholar
Gerner EW, Meyskens FL Jr (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4:781–792 PubMedCAS Google Scholar
Pegg AE (2009) Mammalian polyamine metabolism and function. IUBMB Life 61:880–894 PubMedCAS Google Scholar
Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51 PubMedCAS Google Scholar
Yoshida M, Kashiwagi K, Shigemasa A, Taniguchi S, Yamamoto K, Makinoshima H, Ishihama A, Igarashi K (2004) A unifying model for the role of polyamines in bacterial cell growth, the polyamine modulon. J Biol Chem 279:46008–46013 PubMedCAS Google Scholar
Igarashi K, Kashiwagi K (2006) Polyamine modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines. J Biochem (Tokyo) 139:11–16 CAS Google Scholar
Uemura T, Higashi K, Takigawa M, Toida T, Kashiwagi K, Igarashi K (2009) Polyamine modulon in yeast-stimulation of COX4 synthesis by spermidine at the level of translation. Int J Biochem Cell Biol 41:2538–2545 PubMedCAS Google Scholar
Nishimura K, Okudaira H, Ochiai E, Higashi K, Kaneko M, Ishii I, Nishimura T, Dohmae N, Kashiwagi K, Igarashi K (2009) Identification of proteins whose synthesis is preferentially enhanced by polyamines at the level of translation in mammalian cells. Int J Biochem Cell Biol 41:2251–2261 PubMedCAS Google Scholar
Saini P, Eyler DE, Green R, Dever TE (2009) Hypusine-containing protein eIF5A promotes translation elongation. Nature 459:118–121 PubMedCAS Google Scholar
Park MH, Nishimura K, Zanelli CF, Valentini SR (2010) Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 41:2538–2545 Google Scholar
Landau G, Bercovich Z, Park MH, Kahana C (2010) The role of polyamines in supporting growth of mammalian cells is mediated through their requirement for translation initiation and elongation. J Biol Chem 285:12474–12481 PubMedCAS Google Scholar
Zou T, Mazan-Mamczarz K, Rao JN, Liu L, Marasa BS, Zhang AH, Xiao L, Pullmann R, Gorospe M, Wang JY (2006) Polyamine depletion increases cytoplasmic levels of RNA-binding protein HuR leading to stabilization of nucleophosmin and p53 mRNAs. J Biol Chem 281:19387–19394 PubMedCAS Google Scholar
Zou T, Liu L, Rao JN, Marasa BS, Chen J, Xiao L, Zhou H, Gorospe M, Wang JY (2008) Polyamines modulate the subcellular localization of RNA-binding protein HuR through AMP-activated protein kinase-regulated phosphorylation and acetylation of importin alpha1. Biochem J 409:389–398 PubMedCAS Google Scholar
Liu L, Rao JN, Zou T, Xiao L, Wang PY, Turner DJ, Gorospe M, Wang JY (2009) Polyamines regulate c-Myc translation through Chk2-dependent HuR phosphorylation. Mol Biol Cell 20:4885–4898 PubMedCAS Google Scholar
Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369 PubMedCAS Google Scholar
Williams K (1997) Modulation and block of ion channels: a new biology of polyamines. Cell Signal 9:1–13 PubMedCAS Google Scholar
Jänne J, Alhonen L, Pietilä M, Keinänen T (2004) Genetic approaches to the cellular functions of polyamines in mammals. Eur J Biochem 271:877–894 PubMed Google Scholar
Pegg AE, Feith DJ, Fong LYY, Coleman CS, O’Brien TG, Shantz LM (2003) Transgenic mouse models for studies of the role of polyamines in normal, hypertrophic and neoplastic growth. Biochem Soc Trans 31:356–360 PubMedCAS Google Scholar
Alhonen L, Uimari A, Pietila M, Hyvonen MT, Pirinen E, Keinanen TA (2009) Transgenic animals modelling polyamine metabolism-related diseases. Essays Biochem 46:125–144 PubMedCAS Google Scholar
Nilsson JA, Keller UB, Baudino TA, Yang C, Norton S, Old JA, Nilsson LM, Neale G, Kramer DL, Porter CW, Cleveland JL (2005) Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation. Cancer Cell 7:433–444 PubMedCAS Google Scholar
Guo Y, Cleveland JL, O’Brien TG (2005) Haploinsufficiency for ODC modifies mouse skin tumor susceptibility. Cancer Res 65:1146–1149 PubMedCAS Google Scholar
Feith DJ, Fong LYY, Pegg AE (2005) Antizyme inhibits N-nitrosomethylbenzylamine-induced mouse forestomach carcinogenesis in a p53-independent manner. Proc Am Assoc Cancer Res 46:A3887 Google Scholar
Rial NS, Meyskens FL, Gerner EW (2009) Polyamines as mediators of APC-dependent intestinal carcinogenesis and cancer chemoprevention. Essays Biochem 46:111–124 PubMedCAS Google Scholar
Gerner EW, Meyskens FL Jr (2009) Combination chemoprevention for colon cancer targeting polyamine synthesis and inflammation. Clin Cancer Res 15:758–761 PubMedCAS Google Scholar
Bailey HH, Kim K, Verma AK, Sielaff K, Larson PO, Snow S, Lenaghan T, Viner JL, Douglas J, Dreckschmidt NE, Hamielec M, Pomplun M, Sharata HH, Puchalsky D, Berg ER, Havighurst TC, Carbone PP (2010)A randomized, double-blind, placebo-controlled phase 3 skin cancer prevention study of α-difluoromethylornithine in subjects with previous history of skin cancer. Cancer Prev Res 3:35–47 CAS Google Scholar
Simoneau AR, Gerner EW, Nagle R, Ziogas A, Fujikawa-Brooks S, Yerushalmi H, Ahlering TE, Lieberman R, McLaren CE, Anton-Culver H, Meyskens FL Jr (2008) The effect of difluoromethylornithine on decreasing prostate size and polyamines in men: results of a year-long phase IIb randomized placebo-controlled chemoprevention trial. Cancer Epidemiol Biomarkers Prev 17:292–299 PubMedCAS Google Scholar
Forshell TP, Rimpi S, Nilsson JA (2010) Chemoprevention of B-cell lymphomas by inhibition of the Myc target spermidine synthase. Cancer Prev Res 3:140–147 Google Scholar
Pegg AE (2008) Spermidine/spermine N 1-acetyltransferase: a key metabolic regulator. Am J Physiol Endocrinol Metab 294:E995–E1010 PubMedCAS Google Scholar
Casero RA Jr, Pegg AE (2009) Polyamine catabolism and disease. Biochem J 421:323–338 PubMedCAS Google Scholar
Jänne J, Alhonen L, Pietila M, Keinanen TA, Uimari A, Hyvonen MT, Pirinen E, Jarvinen A (2006) Genetic manipulation of polyamine catabolism in rodents. J Biochem (Tokyo) 139:155–160 Google Scholar
Chattopadhyay MK, Park MH, Tabor H (2008) Hypusine modification for growth is the major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in limiting spermidine. Proc Natl Acad Sci USA 105:6554–6559 PubMedCAS Google Scholar
Pegg AE, Wang X (2009) Mouse models to investigate the function of spermine. Commun Integr Biol 2:271–274 PubMedCAS Google Scholar
Hanfrey C, Sommer S, Mayer MJ, Burtin D, Michael AJ (2001) Arabidopsis polyamine biosynthese: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J 27:551–560 PubMedCAS Google Scholar
Hanfrey C, Franceschetti M, Mayer MJ, Illingworth C, Michael AJ (2002) Abrogation of upstream open reading frame-mediated translational control of a plant S-adenosylmethionine decarboxylase results in polyamine disruption and growth perturbations. J Biol Chem 277:44131–44139 PubMedCAS Google Scholar
Vera-Sirera F, Minguet EG, Singh SK, Ljung K, Tuominen H, Blazquez MA, Carbonell J (2010) Role of polyamines in plant vascular development. Plant Physiol Biochem 48:534–539 PubMedCAS Google Scholar
Seiler N, Bolkenius FN, Knodgen B (1985) The influence of catabolic reactions on polyamine excretion. Biochem J 225:219–226 PubMedCAS Google Scholar
Morgan DM (1998) Polyamine oxidases–enzymes of unknown function? Biochem Soc Trans 26:586–591 PubMedCAS Google Scholar
Kimes BW, Morris DR (1971) Inhibition of nucleic acid and protein synthesis in Escherichia coli by oxidized polyamines and acrolein. Biochim Biophys Acta 228:235–244 PubMedCAS Google Scholar
Kimes BW, Morris DR (1971) Preparation and stability of oxidized polyamines. Biochim Biophys Acta 228:223–234 PubMedCAS Google Scholar
Wang Y, Casero RA Jr (2006) Mammalian polyamine catabolism: a therapeutic target, a pathological problem, or both? J Biochem (Tokyo) 139:17–25 CAS Google Scholar
Adachi MS, Juarez PR, Fitzpatrick PF (2010) Mechanistic studies of human spermine oxidase: kinetic mechanism and pH effects. Biochemistry 49:386–392 PubMedCAS Google Scholar
Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis-Angelakis KA (2008) Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol 147:1845–1857 PubMedCAS Google Scholar
Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88 PubMedCAS Google Scholar
Rodriguez AA, Maiale SJ, Menendez AB, Ruiz OA (2009) Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress. J Exp Bot 60: 4249–4262 PubMedCAS Google Scholar
Childs AC, Mehta DJ, Gerner EW (2003) Polyamine-dependent gene expression. Cell Mol Life Sci 60:1394–1406 PubMedCAS Google Scholar
Park MH (2006) The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J Biochem (Tokyo) 139:161–169 CAS Google Scholar
Hyvönen MT, Keinänen TA, Cerrada-Gimenez M, Sinervirta R, Grigorenko N, Khomutov AR, Vepsäläinen J, Alhonen L, Jänne J (2007) Role of hypusinated eukaryotic translation initiation factor 5A in polyamine depletion-induced cytostasis.J Biol Chem 282:34700–34706 PubMed Google Scholar
Hoque M, Hanauske-Abel HM, Palumbo P, Saxena D, D’Alliessi-Gandolfi D, Park MH, Pe’ery T, Mathews MB (2009) Inhibition of HIV-1 gene expression by Ciclopirox and Deferiprone, drugs that prevent hypusination of eukaryotic initiation factor 5A. Retrovirology 6:90 PubMed Google Scholar
Vu VV, Emerson JP, Martinho M, Kim YS, Munck E, Park MH, Que L Jr (2009) Human deoxyhypusine hydroxylase, an enzyme involved in regulating cell growth, activates O2 with a nonheme diiron center. Proc Natl Acad Sci USA 106:14814–14819 PubMedCAS Google Scholar
Pegg AE (1986) Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J 234:249–262 PubMedCAS Google Scholar
Pegg AE (2006) Regulation of ornithine decarboxylase. J Biol Chem 281:14529–14532 PubMedCAS Google Scholar
Kahana C (2009) Regulation of cellular polyamine levels and cellular proliferation by antizyme and antizyme inhibitor. Essays Biochem 46:47–61 PubMedCAS Google Scholar
Bale S, Lopez MM, Makhatadze GI, Fang Q, Pegg AE, Ealick SE (2008) Structural basis for putrescine activation of human S-adenosylmethionine decarboxylase. Biochemistry 47:13404–13417 PubMedCAS Google Scholar
Willert EK, Fitzpatrick R, Phillips MA (2007) Allosteric regulation of an essential trypanosome polyamine biosynthetic enzyme by a catalytically dead homolog. Proc Natl Acad Sci USA 104:8275–8280 PubMedCAS Google Scholar
Willert EK, Phillips MA (2008) Regulated expression of an essential allosteric activator of polyamine biosynthesis in African trypanosomes. PLoS Pathog 4:e1000183 PubMed Google Scholar
Willert EK, Phillips MA (2009) Cross-species activation of trypanosome S-adenosylmethionine decarboxylase by the regulatory subunit prozyme. Mol Biochem Parasitol 168:1–6 PubMedCAS Google Scholar
Bacchi CJ (2009) Chemotherapy of human African trypanosomiasis. Interdiscip Perspect Infect Dis 2009:195040 PubMed Google Scholar
Barker RH Jr, Liu H, Hirth B, Celatka CA, Fitzpatrick R, Xiang Y, Willert EK, Phillips MA, Kaiser M, Bacchi CJ, Rodriguez A, Yarlett N, Klinger JD, Sybertz E (2009) Novel S-adenosylmethionine decarboxylase inhibitors for the treatment of human African trypanosomiasis. Antimicrob Agents Chemother 53:2052–2058 PubMedCAS Google Scholar
Russell DH, Snyder SH (1969) Amine synthesis in regenerating rat liver: extremely rapid turnover of ornithine decarboxylase. Mol Pharmacol 5:253–262 PubMedCAS Google Scholar
Coffino P (2001) Regulation of cellular polyamines by antizyme. Nat Rev Mol Cell Biol 2:188–194 PubMedCAS Google Scholar
Kahana C (2009) Antizyme and antizyme inhibitor, a regulatory tango. Cell Mol Life Sci 66:2479–2488 PubMedCAS Google Scholar
Heller JS, Fong WF, Canellakis ES (1976) Induction of a protein inhibitor to ornithine decarboxylase by the end products of its reaction. Proc Natl Acad Sci USA 73:1858–1862 PubMedCAS Google Scholar
Hayashi S, Murakami Y, Matsufuji S (1996) Ornithine decarboxylase antizyme: a novel type of regulatory protein. TIBS 21:27–30 PubMedCAS Google Scholar
Yamaguchi Y, Takatsuka Y, Matsufuji S, Murakami Y, Kamio Y (2006) Characterization of a counterpart to mammalian ornithine decarboxylase antizyme in prokaryotes. J Biol Chem 281:3995–4001 PubMedCAS Google Scholar
Ivanov IP, Matsufuji S, Murakami Y, Gesteland RF, Atkins JF (2000) Conservation of polyamine regulation by translational frameshifting from yeast to mammals. EMBO J 19:1907–1917 PubMedCAS Google Scholar
Howard MT, Shirts BH, Zhou J, Carlson CL, Matsufuji S, Gesteland RF, Weeks RS, Atkins JF (2001) Cell culture analysis of the regulatory frameshift event required for the expression of mammalian antizymes. Genes Cells 6:931–941 PubMedCAS Google Scholar
Ivanov IP, Loughran G, Atkins JF (2008) uORFs with unusual translational start codons autoregulate expression of eukaryotic ornithine decarboxylase homologs. Proc Natl Acad Sci USA 105:10079–10084 PubMedCAS Google Scholar
Murai N, Shimizu A, Murakami Y, Matsufuji S (2009) Subcellular localization and phosphorylation of antizyme 2. J Cell Biochem 108:1012–1021 PubMedCAS Google Scholar
Tokuhiro K, Isotani A, Yokota S, Yano Y, Oshio S, Hirose M, Wada M, Fujita K, Ogawa Y, Okabe M, Nishimune Y, Tanaka H (2009) OAZ-t/OAZ3 is essential for rigid connection of sperm tails to heads in mouse. PLoS Genet 5:e1000712 PubMed Google Scholar
Lopez-Contreras AJ, Ramos-Molina B, Cremades A, Penafiel R (2009) Antizyme inhibitor 2: molecular, cellular and physiological aspects. Amino Acids 38:603–611 PubMed Google Scholar
Su KL, Liao YF, Hung HC, Liu GY (2009) Critical factors determining dimerization of human antizyme inhibitor. J Biol Chem 284:26768–26777 PubMedCAS Google Scholar
Snapir Z, Keren-Paz A, Bercovich Z, Kahana C (2008) ODCp, a brain- and testis-specific ornithine decarboxylase paralogue, functions as an antizyme inhibitor, although less efficiently than AzI1. Biochem J 410:613–619 PubMedCAS Google Scholar
Tang H, Ariki K, Ohkido M, Murakami Y, Matsufuji S, Li Z, Yamamura K (2009) Role of ornithine decarboxylase antizyme inhibitor in vivo. Genes Cells 14:79–87 PubMedCAS Google Scholar
Nilsson JA, Maclean KH, Keller UB, Pendeville H, Baudino TA, Cleveland JL (2004) Mnt loss triggers Myc transcription targets, proliferation, apoptosis, and transformation. Mol Cell Biol 24:1560–1569 PubMedCAS Google Scholar
Shantz LM, Levin VA (2007) Regulation of ornithine decarboxylase during oncogenic transformation: mechanisms and therapeutic potential. Amino Acids 33:213–223 PubMedCAS Google Scholar
Pyronnet S, Pradayrol L, Sonenberg N (2005) Alternative splicing facilitates internal ribosome entry on the ornithine decarboxylase mRNA. Cell Mol Life Sci 62:1267–1274 PubMedCAS Google Scholar
Origanti S, Shantz LM (2007) Ras transformation of RIE-1 cells activates cap-independent translation of ornithine decarboxylase: regulation by the Raf/MEK/ERK and phosphatidylinositol 3-kinase pathways. Cancer Res 67:4834–4842 PubMedCAS Google Scholar
Grens A, Scheffler IE (1990) The 5′- and 3′-untranslated regions of ornithine decarboxylase mRNA affect the translational efficiency. J Biol Chem 265:11810–11816 PubMedCAS Google Scholar
Igarashi K, Ito K, Kashiwagi K (2001) Polyamine uptake systems in Escherichi coli. Res Microbiol 152:271–278 PubMedCAS Google Scholar
Igarashi K, Kashiwagi K (1999) Polyamine transport in bacteria and yeast. Biochem J 344:633–642 PubMedCAS Google Scholar
Aouida M, Leduc A, Poulin R, Ramotar D (2005) AGP2 encodes the major permease for high affinity polyamine import in Saccharomyces cerevisiae. J Biol Chem 280:24267–24276 PubMedCAS Google Scholar
Uemura T, Kashiwagi K, Igarashi K (2007) Polyamine uptake by DUR3 and SAM3 in Saccharomyces cerevisiae. J Biol Chem 282:7733–7741 PubMedCAS Google Scholar
Hasne MP, Ullman B (2005) Identification and characterization of a polyamine permease from the protozoan parasite Leishmania major. J Biol Chem 280:15188–15194 PubMedCAS Google Scholar
Hasne MP, Coppens I, Soysa R, Ullman B (2010) A high-affinity putrescine-cadaverine transporter from Trypanosoma cruzi. Mol Microbiol 76:78–91 PubMedCAS Google Scholar
Burns MR, Carlson CL, Vanderwerf SM, Ziemer JR, Weeks RS, Cai F, Webb HW, Graminski GF (2001) Amino acid/spermine conjugates: polyamine amides as potent spermidine uptake inhibitors. J Med Chem 44:3632–3644 PubMedCAS Google Scholar
Covassin L, Desjardins M, Soulet D, Charest-Gaudreault R, Audette M, Poulin R (2003) Xylylated dimers of putrescine and polyamines: influence of the polyamine backbone on spermidine transport inhibition. Bioorg Med Chem Lett 13:3267–3271 PubMedCAS Google Scholar
Burns MR, Graminski GF, Weeks RS, Chen Y, O’Brien TG (2009) Lipophilic lysine-spermine conjugates are potent polyamine transport Inhibitors for use in combination with a polyamine biosynthesis inhibitor.J Med Chem 52:1983–1993 PubMedCAS Google Scholar
Heinick A, Urban K, Roth S, Spies D, Nunes F, Phanstiel O IV, Liebau E, Luersen K (2010) Caenorhabditis elegans P5B-type ATPase CATP-5 operates in polyamine transport and is crucial for norspermidine-mediated suppression of RNA interference. FASEB J 24:206–217 PubMed Google Scholar
Rannels DE, Pegg AE, Clark RS, Addison JL (1985) Interaction of paraquat and amine uptake by rat lungs perfused in situ. AmJ Physiol 249:E506–E513 PubMedCAS Google Scholar
Minton KW, Tabor H, Tabor CW (1990) Paraquat toxicity is increased in Escherichia coli defective in the synthesis of polyamines. Proc Natl Acad Sci USA 87:2851–2855 PubMedCAS Google Scholar
Mandel J, Flintoff WF (1978) Isolation of mutant mammalian cells altered in polyamine transport. J Cell Physiol 97:335–344 PubMedCAS Google Scholar
Heaton MA, Flintoff WF (1988) Methylglyoxal bis (guanylhydrazone)-resistant Chinese hamster ovary cells: genetic evidence that more than a single locus controls uptake. J Cell Physiol 136:133–139 PubMedCAS Google Scholar
Byers TL, Kameji R, Rannels DE, Pegg AE (1987) Multiple pathways for uptake of paraquat, methylglyoxal bis(guanylhydrazone), and polyamines. Am J Physiol 252:C663–C669 PubMedCAS Google Scholar
Rossi T, Coppi A, Bruni E, Ruberto A, Giudice S, Baggio G (2008) Mepacrine antagonises tumour cell growth induced by natural polyamines. Anticancer Res 28:2765–2768 PubMedCAS Google Scholar
Holley JL, Mather A, Wheelhouse RT, Cullis PM, Hartley JA, Bingham JP, Cohen GM (1992) Targeting of tumor cells and DNA by a chlorambucil-spermidine conjugate. Cancer Res 52:4190–4195 PubMedCAS Google Scholar
Kaur N, Delcros JG, Archer J, Weagraff NZ, Martin B, Phanstiel O IV (2008) Designing the polyamine pharmacophore: influence of _N_-substituents on the transport behavior of polyamine conjugates. J Med Chem 51:2551–2560 PubMedCAS Google Scholar
Palmer AJ, Ghani RA, Kaur N, Phanstiel O, Wallace HM (2009) A putrescine-anthracence conjugate: a paradigm for selective drug delivery. Biochem J 424:431–438 PubMedCAS Google Scholar
Mitchell JL, Leyser A, Holtorff MS, Bates JS, Frydman B, Valasinas A, Reddy VK, Marton LJ (2002) Antizyme induction by polyamine analogues as a factor of cell growth inhibition. Biochem J 366:663–671 PubMedCAS Google Scholar
Mitchell JL, Simkus CL, Thane TK, Tokarz P, Bonar MM, Frydman B, Valasinas AL, Reddy VK, Marton LJ (2004) Antizyme induction mediates feedback limitation of the incorporation of specific polyamine analogues in tissue culture. Biochem J 384:271–279 PubMedCAS Google Scholar
Soulet D, Gagnon B, Rivest S, Audette M, Poulin R (2004) A fluorescent probe of polyamine transport accumulates into intracellular acidic vesicles via a two-step mechanism. J Biol Chem 279:49355–49366 PubMedCAS Google Scholar
Belting M, Persson S, Fransson L-Å (1999) Proteoglycan involvement in polyamine uptake. Biochem J 338:317–323 PubMedCAS Google Scholar
Belting M, Mani K, Jonsson M, Cheng F, Sandgren S, Jonsson S, Ding K, Delcros JG, Fransson LA (2003) Glypican-1 is a vehicle for polyamine uptake in mammalian cells: a pivital role for nitrosothiol-derived nitric oxide. J Biol Chem 278:47181–47189 PubMedCAS Google Scholar
Belting M, Borsig L, Fuster MM, Brown JR, Persson L, Fransson LA, Esko JD (2002) Tumor attenuation by combined heparan sulfate and polyamine depletion. Proc Natl Acad Sci USA 99:371–376 PubMedCAS Google Scholar
Welch JE, Bengtson P, Svensson K, Wittrup A, Jenniskens GJ, Ten Dam GB, Van Kuppevelt TH, Belting M (2008) Single chain fragment anti-heparan sulfate antibody targets the polyamine transport system and attenuates polyamine-dependent cell proliferation. Int J Oncol 32:749–756 PubMedCAS Google Scholar
Roy UK, Rial NS, Kachel KL, Gerner EW (2008) Activated K-RAS increases polyamine uptake in human colon cancer cells through modulation of caveolar endocytosis. Mol Carcinog 47:538–553 PubMedCAS Google Scholar
Hawell L, Tjandrawinata RR, Byus CV (1994) Selective putrescine export is regulated by insulin and ornithine in Reuber H35 hepatoma cells. Biochim Biopyhs Acta 1222:15–26 Google Scholar
Hawel L III, Byus CV (2002) A streamlined method for the isolation and quantitation of nanomole levels of exported polyamines in cell culture media. Anal Biochem 311:127–132 PubMedCAS Google Scholar
Pastorian KE, Byus CV (1997) Tolerance to putrescine toxicity in Chinese hamster ovary cells is associated with altered uptake and export. Exp Cell Res 231:284–295 PubMedCAS Google Scholar
Uemura T, Yerushalmi HF, Tsaprailis G, Stringer DE, Pastorian KE, Hawel L III, Byus CV, Gerner EW (2008) Identification and characterization of a diamine exporter in colon epithelial cells. J Biol Chem 283:26428–26435 PubMedCAS Google Scholar
Bardocz S, Duguid TJ, Brown DS, Grant G, Pusztai A, White A, Ralph A (1995) The importance of dietary polyamines in cell regeneration and growth. Br J Nutr 73:819–828 PubMedCAS Google Scholar
Quemener V, Moulinoux JP, Havouis R, Seiler N (1992) Polyamine deprivation enhances antitumoral efficacy of chemotherapy. Anticancer Res 12:1447–1454 PubMedCAS Google Scholar
Quemener V, Blancard Y, Chamaillard L, Havouis R, Cipolla B, Moulinoux J (1994) Polyamine deprivation: a new tool in cancer treatment. Anticancer Res 14:443–448 PubMedCAS Google Scholar
Cipolla B, Guilli F, Moulinoux JP (2003) Polyamine-reduced diet in metastatic hormone-refractory prostate cancer (HRPC) patients. Biochem Soc Trans 31:384–387 PubMedCAS Google Scholar
Estebe JP, Legay F, Gentili M, Wodey E, Leduc C, Ecoffey C, Moulinoux JP (2006) An evaluation of a polyamine-deficient diet for the treatment of inflammatory pain. Anesth Analg 102:1781–1788 PubMedCAS Google Scholar
Soda K, Kano Y, Sakuragi M, Takao K, Lefor A, Konishi F (2009) Long-term oral polyamine intake increases blood polyamine concentrations. J Nutr Sci Vitaminol (Tokyo) 55:361–366 CAS Google Scholar
Sabater-Molina M, Larque E, Torrella F, Plaza J, Lozano T, Munoz A, Zamora S (2009) Effects of dietary polyamines at physiologic doses in early-weaned piglets. Nutrition 25:940–946 PubMedCAS Google Scholar
Zoumas-Morse C, Rock CL, Quintana EL, Neuhouser ML, Gerner EW, Meyskens FL Jr (2007) Development of a polyamine database for assessing dietary intake. J Am Diet Assoc 107:1024–1027 PubMedCAS Google Scholar
Kawakita M, Hiramatsu K (2006) Diacetylated derivatives of spermine and spermidine as novel promising tumor markers. J Biochem (Tokyo) 139:315–322 CAS Google Scholar
Russell DH (1977) Clinical relevance of polyamines as biochemical markers of tumor kinetics. Clin Chem 23:22–27 PubMedCAS Google Scholar
Durie BG, Salmon SE, Russell DH (1977) Polyamines as markers of response and disease activity in cancer chemotherapy. Cancer Res 37:214–221 PubMedCAS Google Scholar
Miki T, Hiramatsu K, Kawakita M (2005) Interaction of N1, N12-diacetylspermine with polyamine transport systems of polarized porcine renal cell line LLC-PK1.J Biochem (Tokyo) 138:479–484 CAS Google Scholar
Hamaoki M, Hiramatsu K, Suzuki S, Nagata A, Kawakita M (2002) Two enzyme-linked immunosorbent assay (ELISA) systems for N1, N8-diacetylspermidine and N1, N12-diacetylspermine using monoclonal antibodies. J Biochem 132:783–788 PubMedCAS Google Scholar
Parchment RE (1993) The implications of a unified theory of programmed cell death, polyamines, oxyradicals and histogenesis in the embryo. Int J Dev Biol 37:75–83 PubMedCAS Google Scholar
Parchment RE, Pierce GB (1989) Polyamine oxidation programmed cell death, and regulation of melanoma in the murine embryonic limb. Cancer Res 49:6680–6686 PubMedCAS Google Scholar
Zahedi K, Wang Z, Barone S, Prada AE, Kelly CN, Casero RA, Yokota N, Porter CW, Rabb H, Soleimani M (2003) Expression of SSAT, a novel biomarker of tubular cell damage, increases in kidney ischemia-reperfusion injury. Am J Physiol Renal Physiol 284:F1046–F1055 PubMedCAS Google Scholar
Zhao YJ, Xu CQ, Zhang WH, Zhang L, Bian SL, Huang Q, Sun HL, Li QF, Zhang YQ, Tian Y, Wang R, Yang BF, Li WM (2007) Role of polyamines in myocardial ischemia/reperfusion injury and their interactions with nitric oxide. Eur J Pharmacol 562:236–246 PubMedCAS Google Scholar
Zahedi K, Bissler JJ, Wang Z, Josyula A, Lu L, Diegelman P, Kisiel N, Porter CW, Soleimani M (2007) Spermidine/spermine N 1-acetyltransferase overexpression in kidney epithelial cells disrupts polyamine homeostasis, leads to DNA damage, and causes G2 arrest. Am J Physiol Cell Physiol 292:C1204–C1215 PubMedCAS Google Scholar
Barone S, Okaya T, Rudich S, Petrovic S, Tenrani K, Wang Z, Zahedi K, Casero RA, Lentsch AB, Soleimani M (2005) Distinct and sequential upregulation of genes regulating cell growth and cell cycle progression during hepatic ischemia-reperfusion injury. AmJ Physiol Cell Physiol 289:C826–C835 PubMedCAS Google Scholar
Zahedi K, Lentsch AB, Okaya T, Barone SL, Sakai N, Witte DP, Arend LJ, Alhonen L, Jell J, Jänne J, Porter CW, Soleimani M (2009) Spermidine/spermine-N 1-acetyltransferase ablation protects against liver and kidney ischemia reperfusion injury in mice. AmJ Physiol Gastrointest Liver Physiol 296:G899–G909 PubMedCAS Google Scholar
Sakata K, Kashiwagi K, Sharmin S, Ueda S, Igarashi K (2003) Acrolein produced from polyamines as one of the uraemic toxins. Biochem Soc Trans 31:371–374 PubMedCAS Google Scholar
Igarashi K, Ueda S, Yoshida K, Kashiwagi K (2006) Polyamines in renal failure. Amino Acids 31:477–483 PubMedCAS Google Scholar
Tomitori H, Usui T, Saeki N, Ueda S, Kase H, Nishimura K, Kashiwagi K, Igarashi K (2005) Polyamine oxidase and acrolein as novel biochemical markers for diagnosis of cerebral stroke. Stroke 36:2609–2613 PubMedCAS Google Scholar
Yoshida M, Higashi K, Jin L, Machi Y, Suzuki T, Masuda A, Dohmae N, Suganami A, Tamura Y, Nishimura K, Toida T, Tomitori H, Kashiwagi K, Igarashi K (2010) Identification of acrolein-conjugated protein in plasma of patients with brain infarction. Biochem Biophys Res Commun 391:1234–1239 PubMedCAS Google Scholar
Saiki R, Nishimura K, Ishii I, Omura T, Okuyama S, Kashiwagi K, Igarashi K (2009) Intense correlation between brain infarction and protein-conjugated acrolein. Stroke 40:3356–3361 PubMedCAS Google Scholar
Yoshida M, Tomitori H, Machi Y, Hagihara M, Higashi K, Goda H, Ohya T, Niitsu M, Kashiwagi K, Igarashi K (2009) Acrolein toxicity: comparison with reactive oxygen species. Biochem Biophys Res Commun 378:313–318 PubMedCAS Google Scholar
Yoshida M, Tomitori H, Machi Y, Katagiri D, Ueda S, Horiguchi K, Kobayashi E, Saeki N, Nishimura K, Ishii I, Kashiwagi K, Igarashi K (2009) Acrolein, IL-6 and CRP as markers of silent brain infarction. Atherosclerosis 203:557–562 PubMedCAS Google Scholar
Hong SK, Chaturvedi R, Piazuelo MB, Coburn LA, Williams CS, Delgado AG, Casero RA Jr, Schwartz DA, Wilson KT (2010) Increased expression and cellular localization of spermine oxidase in ulcerative colitis and relationship to disease activity. Inflamm Bowel Dis 16:1557–1566 PubMed Google Scholar
Gobert AP, Cheng Y, Wang JY, Boucher JL, Iyer RK, Cederbaum SD, Casero RA Jr, Newton JC, Wilson KT (2002) Heliobacter pylori induces macrophage apoptosis by activation of arginase II. J Immunol 168:4692–4700 PubMedCAS Google Scholar
Cheng Y, Chaturvedi R, Asim M, Bussiere FI, Scholz A, Xu H, Casero RA Jr, Wilson KT (2005) _Helicobacter pylori_-induced macrophage apoptosis requires activation of ornithine decarboxylase by c-Myc. J Biol Chem 280:22492–22496 PubMedCAS Google Scholar
Chaturvedi R, Cheng Y, Asim M, Bussiere FI, Xu H, Gobert AP, Hacker A, Casero RA Jr, Wilson KT (2004) Induction of polyamine oxidase 1 by Helicobacter pylori causes macrophage apoptosis by hydrogen peroxide release and mitochondrial membrane depolarization. J Biol Chem 279:40161–40173 PubMedCAS Google Scholar
Xu H, Chaturvedi R, Cheng Y, Bussiere FI, Asim M, Yao MD, Potosky D, Meltzer SJ, Rhee JG, Kim SS, Moss SF, Hacker A, Wang Y, Casero RA Jr, Wilson KT (2004) Spermine oxidation induced by Helicobacter pylori results in apoptosis and DNA damage: implications for gastric carcinogenesis. Cancer Res 64:8521–8525 PubMedCAS Google Scholar
Tucker JM, Murphy JT, Kisiel N, Diegelman P, Barbour KW, Davis C, Medda M, Alhonen L, Janne J, Kramer DL, Porter CW, Berger FG (2005) Potent modulation of intestinal tumorigenesis in Apcmin/+ mice by the polyamine catabolic enzyme spermidine/spermine N 1-acetyltransferase. Cancer Res 65:5390–5398 PubMedCAS Google Scholar
Hyvonen MT, Merentie M, Uimari A, Keinanen TA, Janne J, Alhonen L (2007) Mechanisms of polyamine catabolism-induced acute pancreatitis. Biochem Soc Trans 35:326–330 PubMedCAS Google Scholar
Jell J, Merali S, Hensen ML, Mazurchuk R, Spernyak JA, Diegelman P, Kisiel ND, Barrero C, Deeb KK, Alhonen L, Patel MS, Porter CW (2007) Genetically altered expression of spermidine/spermine N 1-acetyltransferase affects fat metabolism in mice via acetyl-CoA. J Biol Chem 282:8404–8413 PubMedCAS Google Scholar
Merentie M, Uimari A, Pietila M, Sinervirta R, Keinanen TA, Vepsalainen J, Khomutov A, Grigorenko N, Herzig KH, Janne J, Alhonen L (2007) Oxidative stress and inflammation in the pathogenesis of activated polyamine catabolism-induced acute pancreatitis. Amino Acids 33:323–330 PubMedCAS Google Scholar
Gimelli G, Giglio S, Zuffardi O, Alhonen L, Suppola S, Cusano R, Lo Nigro C, Gatti R, Ravazzolo R, Seri M (2002) Gene dosage of the spermidine/spermine N 1-acetyltransferase (SSAT) gene with putrescine accumulation in a patient with a Xp21.1p22.12 duplication and keratosis follicularis spinulosa decalvans (KFSD). Hum Genet 111:235–241 PubMedCAS Google Scholar
Pietila M, Pirinen E, Keskitalo S, Juutinen S, Pasonen-Seppanen S, Keinanen T, Alhonen L, Jänne J (2005) Disturbed keratinocyte differentiation in transgenic mice and organotypic keratinocyte cultures as a result of spermidine/spermine N 1-acetyltransferase overexpression. J Invest Dermatol 124:596–601 PubMed Google Scholar
Kaufmann AM, Krise JP (2008) Niemann-Pick C1 functions in regulating lysosomal amine content. J Biol Chem 283:24584–24593 PubMedCAS Google Scholar
Sequeira A, Gwadry FG, Ffrench-Mullen JM, Canetti L, Gingras Y, Casero RA Jr, Rouleau G, Benkelfat C, Turecki G (2006) Implication of SSAT by gene expression and genetic variation in suicide and major depression. Arch Gen Psychiatry 63:35–48 PubMedCAS Google Scholar
Guipponi M, Deutsch S, Kohler K, Perroud N, Le Gal F, Vessaz M, Laforge T, Petit B, Jollant F, Guillaume S, Baud P, Courtet P, La Harpe R, Malafosse A (2009) Genetic and epigenetic analysis of SSAT gene dysregulation in suicidal behavior. Am J Med Genet B 50B:799–807 Google Scholar
Klempan TA, Rujescu D, Merette C, Himmelman C, Sequeira A, Canetti L, Fiori LM, Schneider B, Bureau A, Turecki G (2009) Profiling brain expression of the spermidine/spermine N 1-acetyltransferase 1 (SAT1) gene in suicide. Am J Med Genet B Neuropsychiatr Genet 150B:934–943 PubMedCAS Google Scholar
Chen GG, Fiori LM, Moquin L, Gratton A, Mamer O, Mechawar N, Turecki G (2010) Evidence of altered polyamine concentrations in cerebral cortex of suicide completers. Neuropsychopharmacology 35:1477–1484 PubMedCAS Google Scholar
Ingi T, Worley PF, Lanahan AA (2001) Regulation of SSAT expression by synaptic activity. Eur J Neurosci 13:1459–1463 PubMedCAS Google Scholar
Kaasinen SK, Grohn OH, Keinanen TA, Alhonen L, Jänne J (2003) Overexpression of spermidine/spermine N 1-acetyltransferase elevates the threshold to pentylenetetrazol-induced seizure activity in transgenic mice. Exp Neurol 183:645–652 PubMedCAS Google Scholar
Kaasinen SK, Oksman M, Alhonen L, Tanila H, Jänne J (2004) Spermidine/spermine N 1-acetyltransferase overexpression in mice induces hypoactivity and spatial learning impairment. Pharmacol Biochem Behav 78:35–45 PubMedCAS Google Scholar
Cason AL, Ikeguchi Y, Skinner C, Wood TC, Lubs HA, Martinez F, Simensen RJ, Stevenson RE, Pegg AE, Schwartz CE (2003) X-Linked spermine synthase gene (SMS) defect: the first polyamine deficiency syndrome. Eur J Human Genet 11:937–944 CAS Google Scholar
de Alencastro G, McCloskey DE, Kliemann SE, Maranduba CM, Pegg AE, Wang X, Bertola DR, Schwartz CE, Passos-Bueno MR, Sertie AL (2008) New SMS mutation leads to a striking reduction in spermine synthase protein function and a severe form of Snyder-Robinson X-linked recessive mental retardation syndrome. J Med Genet 45:539–543 PubMed Google Scholar
Becerra-Solano LE, Butler J, Castañeda-Cisneros G, McCloskey DE, Wang X, Pegg AE, Schwartz CE, Sánchez-Corona J, Garcia-Ortiz JE (2009) A missense mutation, p.V132G, in the X-linked spermine synthase gene (SMS) causes Snyder-Robinson syndrome. Am J Med Genet A 149A:328–335 PubMedCAS Google Scholar
Lakanen JR, Coward JK, Pegg AE (1992) α-Methylpolyamines: metabolically stable spermidine and spermine mimics capable of supporting growth in cells depleted of polyamines. J Med Chem 35:724–734 PubMedCAS Google Scholar
Varnado BL, Voci CJ, Meyer LM, Coward JK (2000) Circular dichroism and NMR studies of metabolically stable α-methylpolyamines: special comparison with naturally occurring polyamines. Bioorg Chem 28:395–408 PubMedCAS Google Scholar
Pegg AE, Poulin R, Coward JK (1995) Use of aminopropyltransferase inhibitors and of non-metabolizable analogues to study polyamine regulation and function. Int J Biochem 27:425–442 CAS Google Scholar
Nagarajan S, Ganem B (1987) Chemistry of naturally occurring polyamines. II. Unsaturated spermidine and spermine derivatives. J Org Chem 52:5044–5046 CAS Google Scholar
Nagarajan S, Ganem B, Pegg AE (1988) Studies of non-metabolizable polyamines that support growth of SV-3T3 cells depleted of natural polyamines by exposure to α-difluoromethylornithine. Biochem J 254:373–378 PubMedCAS Google Scholar
Yang J, Xiao L, Berkey KA, Tamez PA, Coward JK, Casero RA Jr (1995) Significant induction of spermidine/spermine N1-acetyltransferase without cytotoxicity by the growth-supporting polyamine analogue 1, 12-dimethylspermine. J Cell Physiol 165:71–76 PubMedCAS Google Scholar
Byers TL, Lakanen JR, Coward JK, Pegg AE (1994) The role of hypusine depletion in cytostasis induced by S-adenosyl-L-methionine decarboxylase inhibition: new evidence provided by 1-methylspermidine and 1, 12-dimethylspermine. Biochem J 303:363–368 PubMedCAS Google Scholar
Byers TL, Wechter R, Hu R, Pegg AE (1994) Effects of the S-adenosylmethionine decarboxylase inhibitor, 5′-{[(Z)-4-amino-2-butenyl] methylamino}-5′-deoxyadenosine, on cell growth and polyamine polyamine metabolism and transport in Chinese hamster ovary cell cultures. Biochem J 303:89–96 PubMedCAS Google Scholar
Byers TL, Ganem B, Pegg AE (1992) Cytostasis induced in L1210 murine leukemia cells by the S-adenosyl-L-methionine decarboxylase inhibitor 5′-{[(Z)-4-amino-2-butenyl]methylamino}-5′-deoxyadenosine may be due to the hypusine depletion. Biochem J 287:717–724 PubMedCAS Google Scholar
Jarvinen A, Grigorenko N, Khomutov AR, Hyvonen MT, Uimari A, Vepsalainen J, Sinervirta R, Keinanen TA, Vujcic S, Alhonen L, Porter CW, Janne J (2005) Metabolic stability of α-methylated polyamine derivatives and their use as substitutes for the natural polyamines. J Biol Chem 280:6595–6601 PubMed Google Scholar
Jarvinen AJ, Cerrada-Gimenez M, Grigorenko NA, Khomutov AR, Vepsalainen JJ, Sinervirta RM, Keinanen TA, Alhonen LI, Janne JE (2006) α-methyl polyamines: efficient synthesis and tolerance studies in vivo and in vitro. First evidence for dormant stereospecificity of polyamine oxidase.J Med Chem 49:399–406 PubMed Google Scholar
Hyvonen MT, Herzig KH, Sinervirta R, Albrecht E, Nordback I, Sand J, Keinanen TA, Vepsalainen J, Grigorenko N, Khomutov AR, Kruger B, Janne J, Alhonen L (2006) activated polyamine catabolism in acute pancreatitis: α-methylated polyamine analogues prevent trypsinogen activation and pancreatitis-associated mortality. Am J Pathol 168:115–122 PubMedCAS Google Scholar
Jarvinen A, Keinanen TA, Grigorenko NA, Khomutov AR, Uimari A, Vepsalainen J, Narvanen A, Alhonen L, Janne J (2006) Guide molecule-driven stereospecific degradation of α-methylpolyamines by polyamine oxidase. J Biol Chem 281:4589–4595 PubMed Google Scholar
Jin HT, Lamsa T, Hyvonen MT, Sand J, Raty S, Grigorenko N, Khomutov AR, Herzig KH, Alhonen L, Nordback I (2008) A polyamine analog bismethylspermine ameliorates severe pancreatitis induced by intraductal infusion of taurodeoxycholate. Surgery 144:49–56 PubMed Google Scholar
Weisell J, Hyvonen MT, Vepsalainen J, Alhonen L, Keinanen TA, Khomutov AR, Soininen P (2010) Novel isosteric charge-deficient spermine analogue-1, 12-diamino-3, 6, 9-triazadodecane: synthesis, pKa measurement and biological activity. Amino Acids 38:501–507 PubMedCAS Google Scholar
Nayvelt I, Hyvonen MT, Alhonen L, Pandya I, Thomas T, Khomutov AR, Vepsalainen J, Patel R, Keinanen TA, Thomas TJ (2010) DNA condensation by chiral alpha-methylated polyamine analogues and protection of cellular DNA from oxidative damage. Biomacromolecules 11:97–105 PubMedCAS Google Scholar
Fashe TM, Keinanen TA, Grigorenko NA, Khomutov AR, Janne J, Alhonen L, Pietila M (2010) Cutaneous application of alpha-methylspermidine activates the growth of resting hair follicles in mice. Amino Acids 38:583–590 PubMedCAS Google Scholar
Vuohelainen S, Pirinen E, Cerrada-Gimenez M, Keinanen TA, Uimari A, Pietila M, Khomutov AR, Janne J, Alhonen L (2010) Spermidine is indispensable in differentiation of 3T3-L1 fibroblasts to adipocytes. J Cell Mol Med 14:1683–1692 PubMedCAS Google Scholar
Räsänen T-L, Alhonen L, Sinervirta R, Keinänen T, Herzig K-H, Suppola S, Khomutov AR, Vepsäläinen J, Jänne J (2002) A polyamine analogue prevents acute pancreatitis and restores early liver regeneration in transgenic rats with activated polyamine catabolism. J Biol Chem 277:39867–39872 PubMed Google Scholar
Hyvonen MT, Sinervirta R, Grigorenko N, Khomutov AR, Vepsalainen J, Keinanen TA, Alhonen L (2010) alpha-Methylspermidine protects against carbon tetrachloride-induced hepatic and pancreatic damage. Amino Acids 38:575–581 PubMed Google Scholar
Pegg AE, Nagarajan S, Naficy S, Ganem B (1991) Role of unsaturated derivatives of spermidine as substrates for spermine synthase and in supporting growth of SV-3T3 cells. Biochem J 274:167–171 PubMedCAS Google Scholar
Holley J, Mather A, Cullis P, Symons MR, Wardman P, Watt RA, Cohen GM (1992) Uptake and cytotoxicity of novel nitroimidazole-polyamine conjugates in Ehrlich ascites tumour cells. Biochem Pharmacol 43:763–769 PubMedCAS Google Scholar
Cullis PM, Green RE, Merson-Davies L, Travis N (1999) Probing the mechanism of transport and compartmentalisation of polyamines in mammalian cells. Chem Biol 6:717–729 PubMedCAS Google Scholar
Wang C, Delcros JG, Biggerstaff J, Phanstiel O IV (2003) Molecular requirements fortargeting the polyamine transport system. Synthesis and biological evaluation of polyamine-anthracene conjugates. J Med Chem 46:2672–2682 PubMedCAS Google Scholar
Soulet D, Covassin L, Kaouass M, Charest-Gaudreault R, Audette M, Poulin R (2002) Role of endocytosis in the internalization of spermidine-C(2)-BODIPY, a highly fluorescent probe of polyamine transport. Biochem J 367:347–357 PubMedCAS Google Scholar
Wang C, Delcros JG, Biggerstaff J, Phanstiel OT (2003) Synthesis and biological evaluation of N1-(anthracen-9-ylmethyl)triamines as molecular recognition elements for the polyamine transporter. J Med Chem 46:2663–2671 PubMedCAS Google Scholar
Gardner RA, Delcros JG, Konate F, Breitbeil F III, Martin B, Sigman M, Huang M, Phanstiel O IV (2004) N1-substituent effects in the selective delivery of polyamine conjugates into cells containing active polyamine transporters. J Med Chem 47:6055–6069 PubMedCAS Google Scholar
Kaur N, Delcros JG, Imran J, Khaled A, Chehtane M, Tschammer N, Martin B, Phanstiel O IV (2008) A comparison of chloroambucil- and xylene-containing polyamines leads to improved ligands for accessing the polyamine transport system. J Med Chem 51:1393–1401 PubMedCAS Google Scholar
Porter CW, McManis J, Casero RA Jr, Bergeron RJ (1987) Relative abilities of bis(ethyl) derivatives of putrescine spermidine and spermine to regulate polyamine biosynthesis and inhibit cell growth. Cancer Res 47:2821–2825 PubMedCAS Google Scholar
Bergeron RJ, Neims AH, McManis JS, Hawthorne TR, Vinson JRT, Bortell R, Ingeno MJ (1988) Synthetic polyamine analogues as antineoplastics. J Med Chem 31:1183–1190 PubMedCAS Google Scholar
Bergeron RJ, McManis JS, Liu CZ, Feng Y, Weimar WR, Luchetta GR, Wu Q, Ortiz-Ocasio J, Vinson JRT, Kramer D, Porter C (1994) Antiproliferative properties of polyamine anlogues: a structure-activity study. J Med Chem 37:3464–3476 PubMedCAS Google Scholar
Casero RA Jr, Frydman B, Stewart TM, Woster PM (2005) Significance of targeting polyamine metabolism as an antineoplastic strategy: unique targets for polyamine analogues. Proc West Pharmacol Soc 48:24–30 PubMedCAS Google Scholar
Casero RA Jr, Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6:373–390 PubMedCAS Google Scholar
Casero RA Jr, Woster PM (2009) Recent advances in the development of polyamine analogues as antitumor agents. J Med Chem 52:4551–4573 PubMedCAS Google Scholar
Senanayake MD, Amunugama H, Boncher TD, Casero RA, Woster PM (2009) Design of polyamine-based therapeutic agents: new targets and new directions. Essays Biochem 46:77–94 PubMedCAS Google Scholar
Basu HS, Feuerstein BG, Deen DF, Lubich WP, Bergeron RJ, Samejima K, Marton LJ (1989) Correlation between the effects of polyamine analogues on DNA conformation and cell growth. Cancer Res 49:5591–5597 PubMedCAS Google Scholar
Chang BK, Bergeron RJ, Porter CW, Vinson JRT, Liang V (1992) Regulatory and antiproliferative effects of N-alkylated polyamine analogues in human and hamster pancreatic adenocarcinoma cell lines. Cancer Chemother Pharmacol 30:183–188 PubMedCAS Google Scholar
Saab NH, West EE, Bieszk NC, Preuss CV, Mank AR, Casero RA Jr, Woster PM (1993) Synthesis and evaluation of unsymmetrically substituted polyamine analogues as modulators of human spermidine/spermine-N 1-acetyltransferase (SSAT) and as potential antitumor agents. J Med Chem 36:2998–3004 PubMedCAS Google Scholar
Reddy VK, Valasinas A, Sarkar A, Basu HS, Marton LJ, Frydman B (1998) Conformationally restricted analogues of lN, 12N-bisethylspermine: synthesis and growth inhibitory effects on human tumor cell lines. J Med Chem 41:4723–4732 PubMedCAS Google Scholar
Casero RA Jr, Woster PM (2001) Terminally alkylated polyamine analogues as chemotherapeutic agents. J Med Chem 44:1–26 PubMedCAS Google Scholar
Valasinas A, Reddy VK, Blokhin AV, Basu HS, Bhattacharya S, Sarkar A, Marton LJ, Frydman B (2003) Long-chain polyamines (oligoamines) exhibit strong cytotoxicities against human prostate cancer cells. Bioorg Med Chem 11:4121–4131 PubMedCAS Google Scholar
Frydman B, Blokhin AV, Brummel S, Wilding G, Maxuitenko Y, Sarkar A, Bhattacharya S, Church D, Reddy VK, Kink JA, Marton LJ, Valasinas A, Basu HS (2003) Cyclopropane-containing polyamine analogues are efficient growth inhibitors of a human prostate tumor xenograft in nude mice. J Med Chem 46:4586–4600 PubMedCAS Google Scholar
Carew JS, Nawrocki ST, Reddy VK, Bush D, Rehg JE, Goodwin A, Houghton JA, Casero RA Jr, Marton LJ, Cleveland JL (2008) The novel polyamine analogue CGC-11093 enhances the antimyeloma activity of bortezomib. Cancer Res 68:4783–4790 PubMedCAS Google Scholar
Frydman B, Porter CW, Maxuitenko Y, Sarkar A, Bhattacharya S, Valasinas A, Reddy VK, Kisiel N, Marton LJ, Basu HS (2003)A novel polyamine analog (SL-11093) inhibits growth of human prostate tumor xenografts in nude mice. Cancer Chemother Pharmacol 51:488–492 PubMedCAS Google Scholar
Casero RA Jr, Celano P, Ervin SJ, Porter CW, Bergeron RJ, Libby P (1989) Differential induction of spermidine/spermine N 1-acetyltransferase in human lung cancer cells by the bis(ethyl)polyamine analogues. Cancer Res 49:3829–3833 PubMedCAS Google Scholar
McCloskey DE, Pegg AE (2003) Properties of the spermidine/spermine N 1-acetyltransferase mutant L156F that decreases cellular sensitivity to the polyamine analogue N 1, N 11-bis(ethyl)norspermine. J Biol Chem 278:13881–13887 PubMedCAS Google Scholar
McCloskey DE, Pegg AE (2000) Altered spermidine/spermine N 1-acetyltransferase activity as a mechanism of cellular resistance to bis(ethyl)polyamine analogues. J Biol Chem 275:28708–28714 PubMedCAS Google Scholar
Pledgie A, Huang Y, Hacker A, Zhang Z, Woster PM, Davidson NE, Casero RA Jr (2005) Spermine oxidase SMO(PAOh1), not N 1-acetylpolyamine oxidase PAO, is the primary source of cytotoxic H2O2 in polyamine analogue-treated human breast cancer cell lines. J Biol Chem 280:39843–39851 PubMedCAS Google Scholar
Jiang R, Choi W, Hu L, Gerner EW, Hamilton SR, Zhang W (2007) Activation of polyamine catabolism by N 1, N 11-diethylnorspermine alters the cellular localization of mTOR and downregulates mTOR protein level in glioblastoma cells. Cancer Biol Ther 6:1644–1648 PubMedCAS Google Scholar
Beckers A, Organe S, Timmermans L, Scheys K, Peeters A, Brusselmans K, Verhoeven G, Swinnen JV (2007) Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res 67:8180–8187 PubMedCAS Google Scholar
Celik A, Kano Y, Tsujinaka S, Okada S, Takao K, Takagi M, Chohnan S, Soda K, Kawakami M, Konishi F (2009) Decrease in malonyl-CoA and its background metabolic alterations in murine model of cancer cachexia. Oncol Rep 21:1105–1111 PubMedCAS Google Scholar
Boncher T, Bi X, Varghese S, Casero RA Jr, Woster PM (2007) Polyamine-based analogues as biochemical probes and potential therapeutics. Biochem Soc Trans 35:356–363 PubMedCAS Google Scholar
Huang Y, Pledgie A, Casero RA Jr, Davidson NE (2005) Molecular mechanisms of polyamine analogs in cancer cells. Anticancer Drugs 16:229–241 PubMedCAS Google Scholar
Wallace HM, Niiranen K (2007) Polyamine analogues – an update. Amino Acids 33:261–265 PubMedCAS Google Scholar
Hacker A, Marton LJ, Sobolewski M, Casero RA Jr (2008) In vitro and in vivo effects of the conformationally restricted polyamine analogue CGC-11047 on small cell and non-small cell lung cancer cells. Cancer Chemother Pharmacol 63:45–53 PubMedCAS Google Scholar
Hakkinen MR, Hyvonen MT, Auriola S, Casero RA Jr, Vepsalainen J, Khomutov AR, Alhonen L, Keinanen TA (2010) Metabolism of N-alkylated spermine analogues by polyamine and spermine oxidases. Amino Acids 38:369–381 PubMed Google Scholar
Huang Y, Greene E, Murray Stewart T, Goodwin AC, Baylin SB, Woster PM, Casero RA Jr (2007) Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes. Proc Natl Acad Sci USA 104:8023–8028 PubMedCAS Google Scholar
Bitonti AJ, Dumont JA, Bush TL, Edwards ML, Stemerick DM, McCann PP, Sjoerdsma A (1989) Bis(benzyl)polyamine analogs inhibit the growth of chloroquine-resistant human malaria parasites (Plasmodium falciparum) in vitro and in combination with α-difluoromethylornithine cure murine malaria. Proc Natl Acad Sci USA 86:651–655 PubMedCAS Google Scholar
Edwards ML, Stemerick DM, Bitonti AJ, Dumont JA, McCann PP, Bey P, Sjoerdsma A (1991) Antimalarial polyamine analogues. J Med Chem 34:569–574 PubMedCAS Google Scholar
Zou Y, Sirisoma N, Woster PM, Casero RA Jr, Weiss LM, Rattendi D, Lane S, Bacchi CJ (2001) Novel alkylpolyamine analogues that possess both antitrypanosomal and antimicrosporidial activity. Bioorg Med Chem Lett 11:1613–1617 PubMedCAS Google Scholar
Woster PM (2001) New therapies for parasitic Infection. Annu Rep Med Chem 36:99–108 CAS Google Scholar
Huang Y, Marton LJ, Woster PM, Casero RA (2009) Polyamine analogues targeting epigenetic gene regulation. Essays Biochem 46:95–110 PubMedCAS Google Scholar
Seiler N, Sarhan S, Knödgen B, Gerhart F (1988) Chain-fluorinated polyamines as tumor markers. II. Metabolic aspects in normal tissues. J Cancer Res Clin Oncol 114:71–80 PubMedCAS Google Scholar
Hull WE, Kunz W, Port RE, Seiler N (1988) Chain-fluorinated polyamines as tumor markers-III. Determination of geminal difluoropolyamines and their precursor 2, 2-difluoroputrescine in normal tissues and experimental tumors by in vitro and in vivo 19F NMR spectroscopy. NMR Biomed 1:11–19 PubMedCAS Google Scholar
Dezeure F, Sarhan S, Seiler N (1988) Chain-fluorinated polyamines as tumor markers. IV. Comparison of 2-fluoroputrescine and 2, 2-difluoroputrescine as substrates of spermidine synthase in vitro and in vivo. IntJ Biochem 20:1299–1312 PubMedCAS Google Scholar
Sarhan S, Knödgen B, Gerhart F, Seiler N (1987) Chain-fluorinated polyamines as tumor markers-I. In vivo transformation of 2, 2-difluoroputrescine into 6, 6-difluorospermidine and 6, 6-difluorospermine. Int J Biochem 19:843–852 PubMedCAS Google Scholar
Hammond JE, Herbst EJ (1968) Analysis of polyamines by thin-layer chromatography. Anal Biochem 22:474–484 PubMedCAS Google Scholar
Seiler N, Wiechmann M (1965) Determination of amines on the 10-10-mole scale. Separation of 1-dimethylamino-naphthalene-5-sulfonyl amides by thin-layer chromatography. Experientia 21:203–204 PubMedCAS Google Scholar
Fleisher JH, Russell DH (1975) Estimation of urinary diamines and polyamines by thin-layer chromatography. J Chromatogr 110:335–340 PubMedCAS Google Scholar
Marton LJ, Russell DH, Levy CC (1973) Measurement of putrescine, spermidine, and spermine in physiological fluids by use of an amino acid analyzer. Clin Chem 19:923–926 PubMedCAS Google Scholar
Seiler N, Knödgen B (1985) Determination of polyamines and related compounds by reversed-phase high-perfomance liquid chromatography: improved separation systems.J Chromatogr 339:45–57 CAS Google Scholar
Kabra PM, Lee HK, Lubich WP, Marton LW (1986) Solid-phase extraction and determination of dansyl derivatives of unconjugated and acetylated polyamines by reversed-phase liquid chromatography; improved separation systems for polyamines in cerebrospinal fluid, urine and tissue. J Chromatogr Biomed Appl 380:19–32 CAS Google Scholar
Morgan DM (1998) Determination of polyamines as their benzoylated derivatives by HPLC. Methods Mol Biol 79:111–118 PubMedCAS Google Scholar
Håkkinen MR, Keinanen TA, Vepsalainen J, Khomutov AR, Alhonen L, Janne J, Auriola S (2007) Analysis of underivatized polyamines by reversed phase liquid chromatography with electrospray tandem mass spectrometry. J Pharm Biomed Anal 45:625–634 PubMed Google Scholar
Håkkinen MR, Keinanen TA, Vepsalainen J, Khomutov AR, Alhonen L, Janne J, Auriola S (2008) Quantitative determination of underivatized polyamines by using isotope dilution RP-LC-ESI-MS/MS. J Pharm Biomed Anal 48:414–421 PubMed Google Scholar
Chen GG, Turecki G, Mamer OA (2009)A quantitative GC-MS method for three major polyamines in postmortem brain cortex.J Mass Spectrom 44:1203–1210 PubMedCAS Google Scholar