Protocols for Use of Homologous Recombination Gene Targeting to Produce MicroRNA Mutants in Drosophila (original) (raw)
References
Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions. Cell136, 215–33. ArticlePubMedCAS Google Scholar
Flynt, A. S., and Lai, E. C. (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet9, 831–42. ArticlePubMedCAS Google Scholar
Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75, 843–54. Google Scholar
Wightman, B., Ha, I., and Ruvkun, G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell75, 855–62. Google Scholar
Rorth, P., Szabo, K., Bailey, A., Laverty, T., Rehm, J., Rubin, G. M., Weigmann, K., Milan, M., Benes, V., Ansorge, W., and Cohen, S. M. (1998) Systematic gain-of-function genetics in Drosophila. Development125, 1049–57. PubMedCAS Google Scholar
Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., and Cohen, S. M. (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell113, 25–36. ArticlePubMedCAS Google Scholar
Xu, P., Vernooy, S. Y., Guo, M., and Hay, B. A. (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol13, 790–5. ArticlePubMedCAS Google Scholar
Li, X., and Carthew, R. W. (2005) A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell123, 1267–77. ArticlePubMedCAS Google Scholar
Karres, J. S., Hilgers, V., Carrera, I., Treisman, J., and Cohen, S. M. (2007) The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell131, 136–45. ArticlePubMedCAS Google Scholar
Ketting, R. F., Fischer, S. E., Bernstein, E., Sijen, T., Hannon, G. J., and Plasterk, R. H. (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev15, 2654–9. Google Scholar
Knight, S. W., and Bass, B. L. (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science293, 2269–71. ArticlePubMedCAS Google Scholar
Grishok, A., Pasquinelli, A. E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D. L., Fire, A., Ruvkun, G., and Mello, C. C. (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell106, 23–34. Google Scholar
Hatfield, S. D., Shcherbata, H. R., Fischer, K. A., Nakahara, K., Carthew, R. W., and Ruohola-Baker, H. (2005) Stem cell division is regulated by the microRNA pathway. Nature435, 974–8. ArticlePubMedCAS Google Scholar
Jin, Z., and Xie, T. (2007) Dcr-1 maintains Drosophila ovarian stem cells. Curr Biol17, 539–44. ArticlePubMedCAS Google Scholar
Wienholds, E., Koudijs, M. J., van Eeden, F. J., Cuppen, E., and Plasterk, R. H. (2003) The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet35, 217–8. ArticlePubMedCAS Google Scholar
Murchison, E. P., Partridge, J. F., Tam, O. H., Cheloufi, S., and Hannon, G. J. (2005) Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA102, 12135–40. ArticlePubMedCAS Google Scholar
Kanellopoulou, C., Muljo, S. A., Kung, A. L., Ganesan, S., Drapkin, R., Jenuwein, T., Livingston, D. M., and Rajewsky, K. (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev19, 489–501. ArticlePubMedCAS Google Scholar
Cayirlioglu, P., Kadow, I. G., Zhan, X., Okamura, K., Suh, G. S., Gunning, D., Lai, E. C., and Zipursky, S. L. (2008) Hybrid neurons in a microRNA mutant are putative evolutionary intermediates in insect CO2 sensory systems. Science319, 1256–60. ArticlePubMedCAS Google Scholar
Robertson, H. M., Preston, C. R., Phillis, R. W., Johnson-Schlitz, D. M., Benz, W. K., and Engels, W. R. (1988) A stable genomic source of P element transposase in Drosophila melanogaster. Genetics118, 461–70. PubMedCAS Google Scholar
Preston, C. R., Sved, J. A., and Engels, W. R. (1996) Flanking duplications and deletions associated with P-induced male recombination in Drosophila. Genetics144, 1623–38. PubMedCAS Google Scholar
Rong, Y. S., and Golic, K. G. (2000) Gene targeting by homologous recombination in Drosophila. Science288, 2013–8. ArticlePubMedCAS Google Scholar
Rong, Y. S., and Golic, K. G. (2001) A targeted gene knockout in Drosophila. Genetics157, 1307–12. PubMedCAS Google Scholar
Rong, Y. S., Titen, S. W., Xie, H. B., Golic, M. M., Bastiani, M., Bandyopadhyay, P., Olivera, B. M., Brodsky, M., Rubin, G. M., and Golic, K. G. (2002) Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev16, 1568–81. Google Scholar
Gong, W. J., and Golic, K. G. (2003) Ends-out, or replacement, gene targeting in Drosophila. Proc Natl Acad Sci USA100, 2556–61. ArticlePubMedCAS Google Scholar
Gong, W. J., and Golic, K. G. (2004) Genomic deletions of the Drosophila melanogaster Hsp70 genes. Genetics168, 1467–76. ArticlePubMedCAS Google Scholar
Xie, H. B., and Golic, K. G. (2004) Gene deletions by ends-in targeting in Drosophila melanogaster. Genetics168, 1477–89. ArticlePubMedCAS Google Scholar
Sokol, N. S., and Ambros, V. (2005) Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev19, 2343–54. ArticlePubMedCAS Google Scholar
Teleman, A. A., Maitra, S., and Cohen, S. M. (2006) Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev20, 417–22. ArticlePubMedCAS Google Scholar
Li, Y., Wang, F., Lee, J. A., and Gao, F. B. (2006) MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes Dev20, 2793–805. ArticlePubMedCAS Google Scholar
Bushati, N., Stark, A., Brennecke, J., and Cohen, S. M. (2008) Temporal reciprocity of miRNAs and their targets during the maternal-to-zygotic transition in Drosophila. Curr Biol18, 501–6. ArticlePubMedCAS Google Scholar
Friggi-Grelin, F., Lavenant-Staccini, L., and Therond, P. (2008) Control of antagonistic components of the hedgehog signaling pathway by microRNAs in Drosophila. Genetics179, 429–39. ArticlePubMedCAS Google Scholar
Sokol, N. S., Xu, P., Jan, Y. N., and Ambros, V. (2008) Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev22, 1591–6. ArticlePubMedCAS Google Scholar
Maggert, K. A., Gong, W. J., and Golic, K. G. (2008) Methods for homologous recombination in Drosophila. Methods Mol Biol420, 155–74. ArticlePubMedCAS Google Scholar
Gao, G., McMahon, C., Chen, J., and Rong, Y. S. (2008) A powerful method combining homologous recombination and site-specific recombination for targeted mutagenesis in Drosophila. Proc Natl Acad Sci USA105, 13999–4004. ArticlePubMedCAS Google Scholar
Choi, C. M., Vilain, S., Langen, M., Van Kelst, S., De Geest, N., Yan, J., Verstreken, P., and Hassan, B. A. (2009) Conditional mutagenesis in Drosophila. Science324, 54. ArticlePubMedCAS Google Scholar
Weng, R., Chen, Y. W., Bushati, N., Cliffe, A., and Cohen, S. M. (2009) Recombinase-mediated cassette exchange provides a versatile platform for gene targeting: knockout of miR-31b. Genetics183, 399–402. ArticlePubMedCAS Google Scholar
Bateman, J. R., Lee, A. M., and Wu, C. T. (2006) Site-specific transformation of Drosophila via phiC31 integrase-mediated cassette exchange. Genetics173, 769–77. ArticlePubMedCAS Google Scholar
Bischof, J., Maeda, R. K., Hediger, M., Karch, F., and Basler, K. (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci USA104, 3312–7. ArticlePubMedCAS Google Scholar
Markstein, M., Pitsouli, C., Villalta, C., Celniker, S. E., and Perrimon, N. (2008) Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat Genet40, 476–83. ArticlePubMedCAS Google Scholar
Groth, A. C., Fish, M., Nusse, R., and Calos, M. P. (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics166, 1775–82. ArticlePubMedCAS Google Scholar
Gloor, G. B., Preston, C. R., Johnson-Schlitz, D. M., Nassif, N. A., Phillis, R. W., Benz, W. K., Robertson, H. M., and Engels, W. R. (1993) Type I repressors of P element mobility. Genetics135, 81–95. PubMedCAS Google Scholar
Siegal, M. L., and Hartl, D. L. (1996) Transgene Coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics144, 715–26. PubMedCAS Google Scholar
Venken, K. J., He, Y., Hoskins, R. A., and Bellen, H. J. (2006) P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science314, 1747–51. Google Scholar
Spradling, A. C. (1986) P element-mediated transformation in “Drosophila: a practical approach” (Roberts, D. B., Ed.), pp. 175–97, IRL Press Limited, Oxford, England. Google Scholar
Kuhstoss, S., and Rao, R. N. (1991) Analysis of the integration function of the streptomycete bacteriophage phi C31. J Mol Biol222, 897–908. ArticlePubMedCAS Google Scholar
Rausch, H., and Lehmann, M. (1991) Structural analysis of the actinophage phi C31 attachment site. Nucleic Acids Res19, 5187–9. ArticlePubMedCAS Google Scholar
Thorpe, H. M., Wilson, S. E., and Smith, M. C. (2000) Control of directionality in the site-specific recombination system of the Streptomyces phage phiC31. Mol Microbiol38, 232–41. ArticlePubMedCAS Google Scholar
Klemenz, R., Weber, U., and Gehring, W. J. (1987) The white gene as a marker in a new P-element vector for gene transfer in Drosophila. Nucleic Acids Res15, 3947–59. ArticlePubMedCAS Google Scholar
Ruby, J. G., Jan, C. H., and Bartel, D. P. (2007) Intronic microRNA precursors that bypass Drosha processing. Nature448, 83–6. ArticlePubMedCAS Google Scholar
Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M., and Lai, E. C. (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell130, 89–100. ArticlePubMedCAS Google Scholar
Li, M. Z., and Elledge, S. J. (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods4, 251–6. ArticlePubMedCAS Google Scholar