Some Mathematical Aspects of the Hawking Effect for Rotating Black Holes (original) (raw)
Abstract
The aim of this work is to give a mathematically rigorous description of the Hawking effect for fermions in the setting of the collapse of a rotating charged star.
Mathematics Subject Classification (2010). 35P25, 35Q75, 58J45, 83C47, 83C57.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
- A. Bachelot, Scattering of scalar fields by spherical gravitational collapse, J. Math. Pures Appl. (9) 76, 155–210 (1997).
Google Scholar - A. Bachelot, The Hawking effect, Ann. Inst. H. Poincaré Phys. Théor. 70, 41–99 (1999).
Google Scholar - B. Carter, Black hole equilibrium states, Black holes/Les astres occlus (École d’Été Phys. Théor., Les Houches, 1972), 57–214, Gordon and Breach, New York, 1973.
Google Scholar - T. Daudé, Sur la théorie de la diffusion pour des champs de Dirac dans divers espaces-temps de la relativité générale, PhD thesis Université Bordeaux 1 (2004).
Google Scholar - J. Dimock, Algebras of local observables on a manifold, Comm. Math. Phys. 77, 219–228 (1980).
Article MathSciNet MATH Google Scholar - J. Dimock, Dirac quantum fields on a manifold, Trans. Amer. Math. Soc. 269, 133–147 (1982).
Article MathSciNet MATH Google Scholar - J. Dimock, B. S. Kay, Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric. I, Ann. Physics 175, 366–426 (1987).
Google Scholar - D. Häfner and J.-P. Nicolas, Scattering of massless Dirac fields by a Kerr black hole, Rev. Math. Phys. 16, 29–123 (2004).
Google Scholar - D. Häfner, Creation of fermions by rotating charged black holes, Mémoires de la SMF 117 (2009), 158 pp.
Google Scholar - S. W. Hawking, Particle creation by black holes, Comm. Math. Phys. 43, 199–220 (1975).
Article MathSciNet Google Scholar - R. Penrose, W. Rindler, Spinors and space-time, Vol. I, Cambridge monographs on mathematical physics, Cambridge University Press 1984.
Google Scholar - S. J. Fletcher and A. W. C. Lun, The Kerr spacetime in generalized Bondi-Sachs coordinates, Classical Quantum Gravity 20, 4153–4167 (2003).
Article MathSciNet MATH Google Scholar - R. Wald, On particle creation by black holes, Comm. Math. Phys. 45, 9–34 (1974).
Article MathSciNet Google Scholar
Author information
Authors and Affiliations
- Institut Fourier-UMR CNRS 5582, Université de Grenoble 1, 100, rue des Maths, 74, 38402, Saint Martin d’Héres Cedex, France
Dietrich Häfner
Authors
- Dietrich Häfner
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toDietrich Häfner .
Editor information
Editors and Affiliations
- , Lehrstuhl für Mathematik, Universität Regensburg, Universitätsstr. 31, Regensburg, 93053, Germany
Felix Finster - , Lehrstuhl für Mathematik, Universität Regensburg, Universitätsstr. 31, Regensburg, 93053, Germany
Olaf Müller - , Fachbereich Mathematik, Universität Hamburg, Bundesstr. 55, Hamburg, 20146, Germany
Marc Nardmann - in den Naturwissenschaften, Max-Planck-Institut für Mathematik, Inselstr. 22-26, Leipzig, 04103, Germany
Jürgen Tolksdorf - in den Naturwissenschaften, Max-Planck-Institut für Mathematik, Inselstr. 22-26, Leipzig, 04103, Germany
Eberhard Zeidler
Rights and permissions
Copyright information
© 2012 Springer Basel AG
About this chapter
Cite this chapter
Häfner, D. (2012). Some Mathematical Aspects of the Hawking Effect for Rotating Black Holes. In: Finster, F., Müller, O., Nardmann, M., Tolksdorf, J., Zeidler, E. (eds) Quantum Field Theory and Gravity. Springer, Basel. https://doi.org/10.1007/978-3-0348-0043-3\_7
Download citation
- .RIS
- .ENW
- .BIB
- DOI: https://doi.org/10.1007/978-3-0348-0043-3\_7
- Published: 12 January 2012
- Publisher Name: Springer, Basel
- Print ISBN: 978-3-0348-0042-6
- Online ISBN: 978-3-0348-0043-3
- eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)