Some Mathematical Aspects of the Hawking Effect for Rotating Black Holes (original) (raw)

Abstract

The aim of this work is to give a mathematically rigorous description of the Hawking effect for fermions in the setting of the collapse of a rotating charged star.

Mathematics Subject Classification (2010). 35P25, 35Q75, 58J45, 83C47, 83C57.

Preview

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Bachelot, Scattering of scalar fields by spherical gravitational collapse, J. Math. Pures Appl. (9) 76, 155–210 (1997).
    Google Scholar
  2. A. Bachelot, The Hawking effect, Ann. Inst. H. Poincaré Phys. Théor. 70, 41–99 (1999).
    Google Scholar
  3. B. Carter, Black hole equilibrium states, Black holes/Les astres occlus (École d’Été Phys. Théor., Les Houches, 1972), 57–214, Gordon and Breach, New York, 1973.
    Google Scholar
  4. T. Daudé, Sur la théorie de la diffusion pour des champs de Dirac dans divers espaces-temps de la relativité générale, PhD thesis Université Bordeaux 1 (2004).
    Google Scholar
  5. J. Dimock, Algebras of local observables on a manifold, Comm. Math. Phys. 77, 219–228 (1980).
    Article MathSciNet MATH Google Scholar
  6. J. Dimock, Dirac quantum fields on a manifold, Trans. Amer. Math. Soc. 269, 133–147 (1982).
    Article MathSciNet MATH Google Scholar
  7. J. Dimock, B. S. Kay, Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric. I, Ann. Physics 175, 366–426 (1987).
    Google Scholar
  8. D. Häfner and J.-P. Nicolas, Scattering of massless Dirac fields by a Kerr black hole, Rev. Math. Phys. 16, 29–123 (2004).
    Google Scholar
  9. D. Häfner, Creation of fermions by rotating charged black holes, Mémoires de la SMF 117 (2009), 158 pp.
    Google Scholar
  10. S. W. Hawking, Particle creation by black holes, Comm. Math. Phys. 43, 199–220 (1975).
    Article MathSciNet Google Scholar
  11. R. Penrose, W. Rindler, Spinors and space-time, Vol. I, Cambridge monographs on mathematical physics, Cambridge University Press 1984.
    Google Scholar
  12. S. J. Fletcher and A. W. C. Lun, The Kerr spacetime in generalized Bondi-Sachs coordinates, Classical Quantum Gravity 20, 4153–4167 (2003).
    Article MathSciNet MATH Google Scholar
  13. R. Wald, On particle creation by black holes, Comm. Math. Phys. 45, 9–34 (1974).
    Article MathSciNet Google Scholar

Download references

Author information

Authors and Affiliations

  1. Institut Fourier-UMR CNRS 5582, Université de Grenoble 1, 100, rue des Maths, 74, 38402, Saint Martin d’Héres Cedex, France
    Dietrich Häfner

Authors

  1. Dietrich Häfner
    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toDietrich Häfner .

Editor information

Editors and Affiliations

  1. , Lehrstuhl für Mathematik, Universität Regensburg, Universitätsstr. 31, Regensburg, 93053, Germany
    Felix Finster
  2. , Lehrstuhl für Mathematik, Universität Regensburg, Universitätsstr. 31, Regensburg, 93053, Germany
    Olaf Müller
  3. , Fachbereich Mathematik, Universität Hamburg, Bundesstr. 55, Hamburg, 20146, Germany
    Marc Nardmann
  4. in den Naturwissenschaften, Max-Planck-Institut für Mathematik, Inselstr. 22-26, Leipzig, 04103, Germany
    Jürgen Tolksdorf
  5. in den Naturwissenschaften, Max-Planck-Institut für Mathematik, Inselstr. 22-26, Leipzig, 04103, Germany
    Eberhard Zeidler

Rights and permissions

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Häfner, D. (2012). Some Mathematical Aspects of the Hawking Effect for Rotating Black Holes. In: Finster, F., Müller, O., Nardmann, M., Tolksdorf, J., Zeidler, E. (eds) Quantum Field Theory and Gravity. Springer, Basel. https://doi.org/10.1007/978-3-0348-0043-3\_7

Download citation

Publish with us