DNA Methylation, chromatin structure and the regulation of gene expression (original) (raw)
References
Almer, A., Rudolph, H., Hinnen, A., and Horz, W. (1986) Removal of positioned nucleosomes from the yeast PH05 promoter upon PH05 induction releases additional upstream activating DNA elements. EMBO J. 5, 2689–2696. PubMedCAS Google Scholar
Ben-Hattar, J., and Jiricny, J. (1988) Methylation of single CpG dinucleotides within a promoter element of the herpes simplex virus tk gene reduces its transcription in vivo. Gene 65, 219–227. ArticlePubMedCAS Google Scholar
Bestor, T. H., and Ingram, V. M. (1983) Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc. Natl. Acad. Sci. USA 80, 5559–5563. ArticlePubMedCAS Google Scholar
Boyes, J., and Bird, A. (1991) DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64, 1123–1134. ArticlePubMedCAS Google Scholar
Buschhausen, G., Graessmann, M., and Graessmann, A. (1985) Inhibition of herpes simplex thymidine kinase gene expression by DNA methylation is an indirect effect. Nucl. Acids Res. 13, 5503–5513. ArticlePubMedCAS Google Scholar
Buschhausen, G., Wittig, B., Graessmann, M., and Graessmann, A. (1987) Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc. Natl. Acad. Sci. USA 84, 1177–1181. ArticleCAS Google Scholar
Cisek, L. J., and Corden, J. L. (1989) Phosphorylation of RNA polymerase by the murine homologue of the cell-cycle control protein cdc 2. Nature 339, 679–684. ArticlePubMedCAS Google Scholar
Conconi, A., Widmer, R. M., Koller, T., and Sogo, J. M. (1989) Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 57, 753–761. ArticlePubMedCAS Google Scholar
Deobagkar, D. D., Liebler, M., Graessmann, M., and Graessmann, A. (1990) Hemimethylation of DNA prevents chromatin expression. Proc. Natl. Acad. Sei. USA 87, 1691–1695. ArticleCAS Google Scholar
Dörfler, W. (1983) DNA methylation and gene activity. Ann. Rev. Biochem. 52, 93–124. Article Google Scholar
Götz, F., Schulze-Forster, K., Wagner, H., Kröger, H., and Simon, D. (1990) Transcription inhibition of SV40 by in vitro DNA methylation. Biochim. Biophy. Acta 1087, 323–329. Google Scholar
Graessmann, M., and Graessmann, A. (1983) Microinjection of tissue culture cells. Methods Enzymol. 101, 482–492. ArticlePubMedCAS Google Scholar
Graessmann, A., Bumke-Vogt, C., Buschhaussen, G., Bauer, M., and Graessmann, M. (1985) SV40 chromatin structure is not essential for viral gene expression. FEBS Lett. 179, 41–45. ArticlePubMedCAS Google Scholar
Graessmann, M., Graessmann, A., Wagner, H., Werner, E., and Simon, D. (1983) Complete DNA methylation does not prevent polyoma and simian virus 40 virus early gene expression. Proc. Natl. Acad. Sei. USA 80, 6470–6474. ArticleCAS Google Scholar
Höller, M., Westin, G., Jiricny, J., and Schaffner, W. (1988) Spl transcription factor binds DNA and activates transcription even when the binding site is CpG methylated. Genes & Develop. 2, 1127–1135. Article Google Scholar
Khan, R., Zhang, X. Y., Supakar, P. C., Ehrlich, K. C., and Ehrlich, M. (1988) Human methylated DNA-binding protein. Determinants of a pBR 322 recognition site. J. Biol. Chem. 263, 14374–14383. PubMedCAS Google Scholar
Keshet, I., Lieman-Hurwitz, J., and Cedar, H. (1986) DNA methylation affects the formation of active chromatin. Cell 44, 535–543. ArticlePubMedCAS Google Scholar
Kovesdi, I., Reichel, R., and Nevins, J. R. (1987) Role of an adenovirus E2 promoter binding factor in ElA-mediated coordinate gene control. Proc. Natl. Acad. Sei. USA 84, 2180–2184. ArticleCAS Google Scholar
Lee, J. M., and Greenleaf, A. L. (1989) A protein kinase that phosphorylates the C-terminal repeat domain of the largest subunit of RNA polymerase II. Proc. Natl. Acad. Sei. USA 86, 3624–3628. ArticleCAS Google Scholar
Lorch, Y., LaPointe, J. W., and Kornberg, R. D. (1987) Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49, 203–210. ArticlePubMedCAS Google Scholar
Rougvie, A. E., and Lis, J. T. (1988) The RNA polymerase II molecule at the 5’ end of the uninduced hsp 70 gene of D. melanogaster is transcriptionally engaged. Cell 54, 795 — 804. ArticlePubMedCAS Google Scholar
Reines, D., Chamberlin, M. J., and Kane, C. M. (1989) Transcription elongation factor Sil (TFIIS) enables RNA polymerase II to elongate through a block to transcription in a human gene in vitro. J. Biol. Chem. 264, 10799–10809. PubMedCAS Google Scholar
Spencer, C. A., and Groudine, M. (1990) Transcription elongation and eukaryotic gene regulation. Oncogene 5, 777–785. PubMedCAS Google Scholar
Sandberg, G., Guhl, E., Graessmann, M., and Graessmann, A. (1991) After microinjection hemimethylated DNA is converted into symmetrically methylated DNA before DNA replication. FEBS Lett. 283, 247–250. ArticlePubMedCAS Google Scholar
Tanaka, K., Appella, E., and Jay, G. (1983) Developmental activation of the H-2K gene is correlated with an increase in DNA methylation. Cell 35, 457–465. ArticlePubMedCAS Google Scholar
Thoma, F. (1991) Structural changes in nucleosomes during transcription: strip, split or flip? TIG 7, 175–177. PubMedCAS Google Scholar
Waalwijk, C., and Flavell, R. A. (1978) Mspl, an isoschizomer of Hpall which cleaves both unmethylated and methylated Hpall sites. Nucl. Acids Res. 5, 3231–3236. ArticlePubMedCAS Google Scholar
Wasylyk, B. (1988) Enhancers and transcription factors in the control of gene expression. Biochim. Biophy. Acta 951, 17–35. CAS Google Scholar
Watt, F., and Molloy, P. L. (1988) Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes & Develop. 2, 1136–1143. ArticleCAS Google Scholar
Wigler, M., Levy, D., and Perucho, M. (1981) The somatic replication of DNA methylation. Cell 24, 33–40. ArticlePubMedCAS Google Scholar
Weintraub, H., and Groudine, M. (1976) Chromosomal subunits in active genes have an altered conformation. Globin genes are digested by deoxyribonuclease I in red blood cell nuclei but not in fibroblast nuclei. Science 193, 848–856. ArticlePubMedCAS Google Scholar