Drug discovery and development with plant-derived compounds (original) (raw)
Huffman MA (1997) Current evidence for self-medication in primates: A multidisciplinary perspective. Yearbook Phys Anthropol 40: 171–200 Google Scholar
Krief S, Huffman MA, Sevenet T, Hladik CM, Grellier P, Loiseau PM, Wrangham RW (2006) Bioactive properties of plants ingested by chimpanzees (Pan troglodytes schweinfurthii) in the Kibale National Park, Uganda. Am J Primat 68: 51–71 CAS Google Scholar
Sneader W (2005) Drug discovery — a history. Wiley, Chichester Google Scholar
Hesse M (2000) Alkaloide — Fluch oder Segen der Natur? Verlag Helvetica Chimica Acta, Zürich, 322 Google Scholar
Harvey AL (2002) Natural products for high-throughput screening. In: MM Iwu, JC Wootton (eds): Ethnomedicine and drug discovery, Elsevier, Amsterdam, 39–44 Google Scholar
Sneader W (1996) Drug prototypes and their exploitation. Wiley, Chichester, 3–10 Google Scholar
Hamburger M, Marston A, Hostettmann K (1991) Search for new drugs of plant origin. Advances in Drug Research vol. 20, Academic Press Ltd, 167–215 CAS Google Scholar
Farnsworth NR, Kaas CJ (1981) An approach utilizing information from traditional medicine to identify tumor-inhibiting plants. J Ethnopharmacol 3: 85–99 PubMedCAS Google Scholar
Hamburger M, Hostettmann K (1991) Bioactivity in plants: The link between phytochemistry and medicine. Phytochemistry 30: 3864–3874 CAS Google Scholar
Wolfender JL, Terreaux C, Hostettmann K (2000) The importance of LC-MS and LC-NMR in the discovery of new lead compounds from plants. Pharm Biol 38 (Suppl): 41–54 CAS Google Scholar
Wolfender JL, Ndjoko K, Hostettmann K (2003) Liquid chromatography with ultraviolet absorbance-mass spectrometric detection and with nuclear magnetic resonance spectrometry: A powerful combination for the on-line structural investigation of plant metabolites. J Chromatogr A 1000: 437–455 PubMedCAS Google Scholar
Bringmann G, Messer K, Wohlart M, Kraus J, Dumbuya K, Rückert M (1999) HPLC-CD on-line coupling in combination with HPLC-NMR and HPLC-MS/MS for the determination of the full absolute stereostructure of new metabolites in plant extracts. Anal Chem 71: 2678–2686 CAS Google Scholar
Niessen WMA, Lin J, Bondoux JC (2002) Developing strategies for isolation of minor impurities with mass spectrometry-directed fractionation. J Chromatogr A 970: 131–140 PubMedCAS Google Scholar
Reynolds WF, Enriquez RG (2002) Chosing the best pulse sequences, acquisition parameters, postacquisition processing strategies, and probes for natural product structure elucidation by NMR spectroscopy. J Nat Prod 65: 221–244 PubMedCAS Google Scholar
Potterat O, Hamburger M (2006) Natural products in drug discovery — concepts and approaches for tracking bioactivity. Curr Org Chem 10: 899–920 CAS Google Scholar
Van Middlesworth F, Cannell RJP (1998) Dereplication and partial identification of natural products, In: RJP Cannell (ed.) In: Methods in Biotechnology, vol. 4, Natural Product Isolation, Human Press Inc, Totowa, New Jersey, 279–327 Google Scholar
Bindseil K, Jakupovic J, Wolf D, Lavayre J, Leboul J, vand der Pyl D (2001) Pure compound libraries; a new perspective for natural product based drug discovery. Drug Discov Today 6: 840–847 PubMedCAS Google Scholar
Abel U, Koch C, Speitling M, Hanske FG (2002) Modern methods to produce naturalproduct libraries. Curr Opin Chem Biol 6: 453–458 PubMedCAS Google Scholar
Jia Q (2003) Generating and screening a natural product library for cyclooxygenase and lipoxygenase dual inhibitors. Stud Nat Prod Chem 29 (Bioactive Natural Products (Part J)): 643–718 CAS Google Scholar
Eldridge GR, Vervoort, HC, Lee CM, Cremin PA, Williams CT, Hart SM, Goering MG, O’Neil-Johnson M, Zeng L (2002) High-throughput method for the production and analysis of large natural product libraries for drug discovery. Anal Chem 74: 3963–3971 PubMedCAS Google Scholar
Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnoparmacol 100: 72–79 CAS Google Scholar
Newmann DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66: 1022–1037 Google Scholar
Butler MS (2005) Natural products to drugs: Natural product derived compounds in clinical trials. Nat Prod Rep 22: 162–195 PubMedCAS Google Scholar
Bennouna J, Campone M, Delord JP, Pinel MC (2005) Vinflunine: A novel antitubulin agent in solid malignancies. Expert Opin Inv Drug 14: 1259–1267 CAS Google Scholar
McIntyre JA, Castaner J (2004) Vinflunine: Antimitotic vinca alkaloid. Drug Future 29: 574–580 CAS Google Scholar
Wani MC, Taylor HL, Wall ME, Coggin P, McPhail AT (1971) Plant antitumor agents: VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93: 2325–2327 PubMedCAS Google Scholar
Horwitz SB, Cohen D, Rao S, Ringel I, Shen HJ, Yang CP (1993) Taxol; mechanisms of action and resistance. J Natl Cancer I Monogr 15: 55–61 Google Scholar
Barboni L, Ballini R, Giarlo G, Appendino G, Fontana G, Bombardelli E (2005) Synthesis and biological evaluation of methoxylated analogs of the newer generation taxoids IDN5109 and IDN5390. Bioorg Med Chem Lett 15: 5182–5186 PubMedCAS Google Scholar
Beckers T, Mahboobi S (2003) Natural, semisynthetic and synthetic microtubule inhibitors for cancer therapy. Drug Future 28: 767–785 CAS Google Scholar
Dubois J, Guénard D, Guéritte F (2003) Recent development in antitumour taxoids. Expert Opin Ther Patents 13: 1809–1823 CAS Google Scholar
Ojima I, Geney R, Ungureanu IM, Li D (2002) Medicinal chemistry and chemical biology of new generation taxcane antitumor agents. Life 53: 269–274 PubMedCAS Google Scholar
Geney R, Chen J, Ojima I (2005) Recent advances in the new generation taxane anticancer agents. Med Chem 1: 125–139 PubMedCAS Google Scholar
Petrangolini G, Cassinelli G, Pratesi G, Tortoreto M, Favini E, Supino R, Lanzi C, Belluco S, Zunino F (2004) Antitumour and antiangiogenic effects of IDN 5390, a novel C-seco taxane, in a paclitaxel-resistant human ovarian tumour xenograft. Brit J Cancer 90: 1464–1468 PubMedCAS Google Scholar
Pratesi G, Laccabue D, Lanzi C, Cassinelli G, Supino R, Zucchetti M, Frapolli R, M D’Incalci E, Bombardelli E, Morazzoni P et al (2003) IDN 5390: An oral taxane candidate for protracted treatment schedules. Brit J Cancer 88: 965–972 PubMedCAS Google Scholar
Jordan MA, Ojima I, Rosas F, Distefano M, Wilson L, Scambia G, Ferlini C (2002) Effects of novel taxanes SB-T-2113 and IDN5109 on tubulin polymerisation and mitosis. Chem Biol 9: 93–101 PubMedCAS Google Scholar
Bradley MO, Swindell CS, Anthony FH, Witman PA, Devanesan P, Webb NL, Baker SD, Wolff AC, Donehower RC (2001) Tumor targeting by conjugation of DHA to paclitaxel. J Contr Rel 74: 233–236 CAS Google Scholar
Kuznetsova L, Chen J, Sun L, Wu X, Pepe A, Veith JM, Pera P, Bernacki R, Ojima I (2006) Syntheses and evaluation of novel fatty acid-second-generation taxoid conjugates as promising anticancer agents. Bioorg Med Chem Lett 16: 974–977 PubMedCAS Google Scholar
Stierle, A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260: 214–216 PubMedCAS Google Scholar
Auclair C (1987) Multimodal action of antitumor agents on DNA: The ellipticine series. Arch Biochem Biophys 259: 1–14 PubMedCAS Google Scholar
Lee K-H, Xiao Z (2003) Lignan in treatment of cancer and other diseases. Phytochem Rev 2: 341–362 CAS Google Scholar
Kluza J, Mazinghien R, Irwin H, Hartley JA, Bailly C (2006) Relation between DNA strand breakage and apopoptic progression upon treatment of HL-60 leukemia cells with tafluposide or etoposide. Anti-Cancer Drug 17: 155–164 CAS Google Scholar
Srivastava V, Negi AS, Kumar JK, Gupta MM, Khanuja SPS (2005) Plant-based anticancer molecules: A chemical and biological profile of some important leads. Bioorg Med Chem 13: 5891–5908 Google Scholar
Hsiang YH, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260: 14873–14878 PubMedCAS Google Scholar
Demarqua D, Huchet M, Coulomb H, Lesueur-Ginot L, Lavergne O, Camara J, Kasprzyk PG, Prevost G, Bigg DCH (2004) BN80927: A novel homocamptothecin that inhibits proliferation of human tumor cells in vitro and in vivo. Cancer Res 64: 4942–4949 Google Scholar
Wink M, Alfermann AW, Franke R, Wetterauer B, Distl M, Windhoevel J, Krohn O, Fuss E, Garden H, Mohagheghzadeh A et al (2005) Sustainable bioproduction of phytochemicals by plant in vitro cultures: Anticancer agents. Plant Genet Resour 3: 90–100 CAS Google Scholar
Asano T, Watase I, Sudo H, Kitajima M, Takayama H, Aimi N, Yamazaki M, Saito K (2004) Camptothecin production by in vitro cultures of Ophiorrhiza liukiuensis and O. kuroiwai. Plant Biotechnol 21: 275–281 CAS Google Scholar
Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68: 1717–1719 PubMedCAS Google Scholar
Hsieh HP, Liou JP, Mahindroo N (2005) Pharmaceutical design of antimitotic agents based on combrestratins. Curr Pharm Design 11: 1655–1677 CAS Google Scholar
Young SL, Chaplin DJ (2004) Combretastatin A4 phosphate: Background and current clinical status. Exp Opin Investig Drugs 13: 1171–1182 CAS Google Scholar
Tozer GM, Kanthou C, Baguley BC (2005) Disrupting tumour blood vessels. Nat Rev Canc 5: 423–435 CAS Google Scholar
Tron GC, Pirali T, Sorba G, Pagliai F, Busacca S, Genazzani AA (2006). Medicinal chemistry of combretastatin A4: Present and future directions. J Med Chem 49: 3033–3044 PubMedCAS Google Scholar
Eichler W, Yafai Y, Wiedermann P, Fengler D (2006) Antineovascular agents in the treatment of eye diseases. Curr Pharm Design 12: 2645–2660 CAS Google Scholar
Hurry JB (1930) The woad plant and its dye. Oxford University Press, London Google Scholar
Hoessel R, Leclerc S, Endicott JA, Nobel MEM, Lawrie A, Tunnah P, Leost M, Damiens E, Marie D, Marko D et al (1999) Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol 1: 60–67 PubMedCAS Google Scholar
Jautelat R, Brumby T, Schäfer M, Briem H, Eisenbrand G, Schwahn S, Krüger M, Lücking U, Prien O, Siemeister G (2005) From the insoluble dye indirubin towards highly active soluble CDK-2 inhibitors. Chem Bio Chem 6: 531–540 PubMedCAS Google Scholar
Merz KH, Schwahn S, Hippe F, Mühlbeyer S, Jakobs S, Eisenbrand G (2004) Novel indirubin derivatives, promising anti-tumor agents inhibiting cyclin-dependent kinases. Int J Clin Pharm Th 42: 656–658 CAS Google Scholar
Sethi G, Ahn KS, Sandur SK, Lin X, Chaturvedi MM, Aggarwal BB (2006) Indirubin enhances tumor necrosis factor-induced apoptosis through modulation of nuclear factor-kB signaling pathways. J Biol Chem 281: 23425–23435 PubMedCAS Google Scholar
Polychronopoulos P, Magiatis P, Skaltsounis AL, Myrianthopoulos V, Mikros E, Tarricone A, Musacchio A, Roe SM, Pearl L, Leost M et al (2004) Structural basis for the synthesis of indirubins as potent and selective inhibitors of glycogen synthase kinase-3 and cyclindependent kinases. J Med Chem 47: 935–946 PubMedCAS Google Scholar
Von Tappeiner H, Jesionek A (1903) Therapeutische Versuche mit fluorescierenden Stoffen. Münch Med Wochenschr 47: 2042–2044 Google Scholar
Agostinis P, Vantieghem A, Merlevede W, de Witte PAM (2002) Hypericin in cancer treatment: More light on the way. Int J Biochem Cell Biol 34: 221–241 PubMedCAS Google Scholar
Ion RM (2000) Porphyrin for tumor destruction in photodynamic therapy. Curr Top Biophys 24: 21–34 CAS Google Scholar
Vincente MGH (2001) Porphyrin-based sensitizers in the detection and treatment of cancer: Recent progress. Curr Med Chem-Anti-Cancer Agents 1: 175–194 Google Scholar
Berg K, Selbo PK, Weyergang A, Dietze A, Prasmickaite L, Bonsted A, Enesaeter BØ, Angell-Petersen E, Warloe T, Frandsen N et al (2005) Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. J Microsc 218: 133–147 PubMedCAS Google Scholar
Pandey S, Suresh K, Dubey S, Zheng X, Chen Y, Butt CA, Morgan J, Ciesielski M, Sajjad M, Nabi HA et al (2006) PDT efficiency of phephorbide a analogs upon conjugation with cyclo(RGDfK). Abstract of Papers, 232nd ACS National Meeting, San Francisco CA, USA, 102–14 September 2006 Google Scholar
Kiesslich T, Krammer B, Plaetzer K (2006) Cellular mechanisms and prospective applications of hypericin in photodynamic therapy. Curr Med Chem 13: 2189–2204 PubMedCAS Google Scholar
Hampson P, Chahal H, Khanim F, Hayden R, Mulder A, Assi LK, Bunce CM, Lord JM (2005) PEP005, a selective small-molecule activator of protein kinase C, has potent antileukemic activity mediated via the delta isoform of PKC. Blood 106: 1362–1368 PubMedCAS Google Scholar
Hampson P, Wang K, Lord JM (2005) PEP-005. Drug Future 30: 1003–1005 CAS Google Scholar
Wang X, Matta R, Shen G, Nelin LD, Liu Y (2006) Mechanism of triptolide-induced apoptosis: Effect on caspase activation and Bid cleavage and essentiality of the hydroxyl group of triptolide. J Mol Med 84: 405–415 PubMedCAS Google Scholar
Itokawa H, Wang X, Lee KH (2005) Homoharringtonine and related compounds. Anti-Canc Agents Nat Prod 47–70 Google Scholar
Cichewicz RH, Kouzi SA (2004) Chemistry, biological activity, and chemotherapeutical potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med Res Rev 24: 90–114 PubMedCAS Google Scholar
Patocka J (2003) Biologically active pentacyclic triterpenes and their current medicine signification. J Appl Biomed 1: 7–12 CAS Google Scholar
Fresco P, Borges F, Diniz C, Marques MPM (2006) New insights on the anticancer properties of dietary polyphenols. Med Res Rev 26: 747–766 PubMedCAS Google Scholar
Shukla Y, Pal SK (2004) Dietary cancer chemoprevention: an overview. Int J Hum Genet 5: 265–276 Google Scholar
Harris DM, Go VLW (2006) How dietary components protect from cancer. In: AB Awad, PG Bradford (eds.) In: Nutrition and cancer prevention, CRC Press, Boca Raton, Florida, 27–58 Google Scholar
Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71: 1397–1421 PubMedCAS Google Scholar
D’Incalci M, Steward WP, Gescher AJ (2005) Use of chemopreventive phytochemicals as antineoplastic agents. Lancet Oncol 6: 899–904 PubMedCAS Google Scholar
Singh S, Khar A (2006) Biological effect of curcumin and its role in cancer chemoprevention and therapy. Anti-Cancer Agents Med Chem 6: 259–270 CAS Google Scholar
Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: A short review. Life Sci 78: 2081–2087 PubMedCAS Google Scholar
Signorelli P, Ghidoni R (2005) Resveratrol as an anticancer nutrient: Molecular basis, open questions and promises. J Nutr Biochem 16: 449–466 PubMedCAS Google Scholar
Jeffery EH, Jarrell J (2001) Cruciferous vegetables and cancer prevention. In: REC Wildman (ed.) In: Handbook of nutraceuticals and functional foods. CRC Press, Boca Raton, Florida, 169–191 Google Scholar
Park EJ, Pezzuto JM (2002) Botanicals in cancer chemoprevention. Cancer Metast Rev 21: 231–255 CAS Google Scholar
Greenwald P, Milner JA, Anderson DA, McDonald SS (2002) Micronutrients in cancer chemoprevention. Cancer Metast Rev 21: 217–230 CAS Google Scholar
Greenwald P (2004) Clinical trials in cancer prevention: Current results and perspectives for the future. J Nutr 134: 3507S–3512S PubMedCAS Google Scholar
Bemis DL, Katz AE, Buttyan R (2006) Clinical trials of natural products as chemopreventive agents for prostate cancer Expert Opin Inv Drug 15: 1191–1200 CAS Google Scholar
Wright CW (2005) Plant-derived antimalarial agents: New leads and challenges. Phytochem Rev 4: 55–61 CAS Google Scholar
Trape JF, Pison G, Spiegel A, Enel C, Rogier C (2002) Combating malaria in Africa. Trends Parasitol 18: 224–230 PubMed Google Scholar
Bray PG, Ward SA, O’Neil PM (2005) Quinolines and artemisinin: Chemistry, biology and history. Curr Top Microbiol 295: 3–38 CAS Google Scholar
Wright CW (2005) Traditional antimalarials and the development of novel antimalarial drugs. J Ethnoparmacol 100: 67–71 CAS Google Scholar
Robert A, Benoit-Vical F, Meunier B (2005) The key role of heme to trigger the antimalarial activity of trioxanes. Coordin Chem Rev 249: 1927–1936 CAS Google Scholar
Posner GH, O’Neil PM (2004) Knowledge of the proposed chemical mechanism of action and cytochrome P450 metabolism of antimalarial trioxane like artemisinin allows rational design of new antimalarial peroxides. Acc Chem Res 37: 397–404 PubMedCAS Google Scholar
Haynes RK, Fugmann B, Stetter J, Rieckmann K, Heilmann H-D, Chan H-W, Cheung M-K, Lam W-L, Wong H-N, Croft SL et al (2006) Artemisone — a highly active antimalarial drug of the artemisinin class. Angew Chem Int Ed 45: 2082–2088 CAS Google Scholar
Hofheinz W, Burgin H, Gocke E, Jaquet C, Masciadri R, Schmid G, Stohler H, Urwyler H (1994) Ro 42-1611 (arteflene), a new effective antimalarial: Chemical structure and biological activity. Trop Med Parasitol 45: 261–265 PubMedCAS Google Scholar
Ashley EA, White NJ (2005) Artemisinin-based combinations. Curr Opin Infect Dis 18: 531–536 PubMedCAS Google Scholar
Haynes RK (2006) From artemisinin to new antimalarials: Biosynthesis, extraction, old and new derivatives, stereochemistry and medicinal chemistry requirements. Curr Top Med Chem 6: 509–537 PubMedCAS Google Scholar
Singh IP, Bharate SB, Bhutani KK (2005) Anti-HIV natural products. Curr Sci 89: 269–290 CAS Google Scholar
Joshi SP (2002) Plant products as anti-HIV agents. J Med Arom Plant Sci 24: 1006–1023 CAS Google Scholar
Meadows DC, Gervay-Hague J (2006) Current developments in HIV chemotherapy. ChemMedChem 1: 16–29 PubMedCAS Google Scholar
Cragg GM, Newman DJ (2003) Plants as a source of anti-cancer and anti-HIV agents. Ann Appl Biol 143: 127–133 CAS Google Scholar
Kashman Y, Gustafson KR, Fuller RW, Cardellina II JH, McMahon JB, Buckheit RW, Hughes SH, Cragg GM, Boyd MR (1992) The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J Med Chem 35: 2735–2743 PubMedCAS Google Scholar
Xu Z-Q, Barrow WW, Suling WJ, Westbrook L, Barrow E, Lin Y-M, Flavin MT (2004) Anti-HIV natural product (+)-calanolide A is active against both drug-susceptible and drug-resistant strains of Mycobacterium tuberculosis. Bioorg Med Chem. 12: 1199–1207 PubMedCAS Google Scholar
Gustafson KR, Cardellina II JH, McMahon JB, Gulakowski RJ, Ishitoya J, Szallasi Z, Lewin NE, Blumberg PM, Weislow OS, Beutler JA et al (1992) A non-promoting phorbol from the Samoan medicinal plant Homalanthus nutans inhibits cell killing by HIV-1. J Med Chem 35: 1978–1986 PubMedCAS Google Scholar
Hezareh M (2005) Prostratin as a new therapeutic agent targeting HIV viral reservoirs. Drug News Perspect 18: 496–500 PubMedCAS Google Scholar
Williams S, Chen LF, Kwon, H, Fenard D, Bisgrove, D, Verdin, E Greene WC (2004) Prostratin antagonizes HIV latency by activating NF-κB. J Biol Chem 279: 42008–42017 PubMedCAS Google Scholar
Huang L, Kashiwada Y, Cosentino LM, Fan S. Lee K-H (1994) 3′4′-Di-O-(-)-camphanoyl-(+)-cis-khellactone and related compounds: A new class of potent anti-HIV agents. Bioorg Med Chem Lett 4: 593–598 CAS Google Scholar
Zhang Q, Chen Y, Xia P, Xia Y, Xia Y, Yang ZY, Donglei Y, Morris-Natschke SL, Lee KH (2004) Anti-AIDS agents. Part 62: Anti-HIV activity of 2′substituted 4-methyl-3′4′-di-O-(-)-camphanoyl-(+)-cis-khellactone (4-methyl DCK) analogs. Bioorg Med Chem Lett 14: 5855–5877 PubMedCAS Google Scholar
Yu D, Suzuki M, Xie L, Morris-Natschke SL, Lee KH (2003) Recent progress in the development of coumarin derivatives as potent anti-HIV agents. Med Res Rev 23: 322–345 PubMedCAS Google Scholar
Huang L, Yuan X, Yu D, Lee KH, Chen CH (2005) Mechanism of action and resistant profile of anti-HIV-1 coumarin derivatives. Virology 332: 623–628 PubMedCAS Google Scholar
Fujioka T, Kashiwada Y, Kilkuskie RE, Cosentino LM, Ballas LM, Jiang JB, Janzen WP, Chen IS, Lee K-H (1994) Anti-aids agents, 11. Betulinic acid and platonic acid as anti-HIV principles from Syzygium claviflorum, and the anti-HIV activity of structurally related triterpenoids. J Nat Prod 57: 243–247 PubMedCAS Google Scholar
Whelan J (2004) Promising Phase I results against new HIV target. Drug Discov Today 9: 823 PubMed Google Scholar
Li F, Goila-Gaur R, Salzwedel K, Kilgore NR, Reddick M, Matallana C, Castillo A, Zoumplis D, Martin DE, Orenstein JM et al (2003) PA-457: A potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc Natl Acad Sci USA 100: 13555–13560 PubMedCAS Google Scholar
Decosterd LA, Parson IC, Gustafson KR, Cardellina II JH, McMahon JB, Cragg GM, Murata Y, Pannell LK, Steiner JR, Clardy J et al (1993) Structure, absolute stereochemistry, and synthesis of conocurvone, a potent, novel HIV-inhibitory naphthoquinone trimer from Conospermum sp. J Am Chem Soc 115: 6673–6679 CAS Google Scholar
Boyd MR, Hallock YF, Cardellina II JH, Manfredi KP, Blunt JW, McMahon JB, Buckheit Jr RW, Bringmann G, Schaeffer M, Cragg GM et al (1994) Anti-HIV michellamines from Ancistrocladus korupensis. J Med Chem 37: 1740–1745 PubMedCAS Google Scholar
Sorbera, LA, Castaner J, Garcia-Capdevilla L (2005) Celgosivir. Drug Future 30: 545–552 CAS Google Scholar
Asano N (2003) Glycosidase inhibitors: Update and perspectives on practical use. Glycobiology 13: 93R–104R PubMedCAS Google Scholar
Ammon HPT (2006) Boswellic acids in chronic inflammatory diseases. Planta Med 72: 1100–1116 PubMedCAS Google Scholar
Singh GB, Atal CK (1986) Pharmacology of an extract of salai guggal ex — Boswellia serrata, a new non-steroidal anti-inflammatory agent. Agents Actions 18: 407–412 PubMedCAS Google Scholar
Safayhi H, Mack T, Sabieraj J, Anazodo MI, Subrananian LR, Ammon HPT (1992) Boswellic acids: Novel, specific nonredox inhibitors of 5-lipoxygenase. J Pharmacol Exp Ther 261: 1143–1146 PubMedCAS Google Scholar
Safayhi H, Sailer ER, Ammon HPT (1995) Mechanism of 5-lipoxygenase inhibition by acetyl-11-keto-β-boswellic acid. Mol Pharmacol 47: 1212–1216 PubMedCAS Google Scholar
Singh GB, Bani S, Singh S (1996) Toxicity and safety of boswellic acids. Phytomedicine 3: 87–90 CAS Google Scholar
Glaser T, Winter S, Groscurth P, Safayhi H, Sailer ER, Ammon HPT, Schabet M, Weller M (1999) Boswellic acids and malignant glioma: Induction of apoptosis but no modulation of drug sensitivity. Brit J Cancer 80: 756–765 PubMedCAS Google Scholar
Winking M, Sarikaya S, Rahmanian A, Jödicke A, Böker DK (2000) Boswellic acids inhibit glioma growth: A new treatment option? J Neuro-Oncol 46: 97–103 CAS Google Scholar
Lalithakumari K, Krishnaraju AV, Sengupta K, Subbaraju GV (2006) Safety and toxicological evaluation of a novel, standardized 3-O-acetyl-11-keto-β-boswellic acid (AKBA)-enriched Boswellia serrata extract (5-Loxin R). Toxicol Mech Method 16: 199–226 CAS Google Scholar
Ammon HPT, Wahl MA (1991) Pharmacology of Curcuma longa. Planta Med 57: 1–7 PubMedCAS Google Scholar
Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: The story so far. Eur J Cancer 41: 1955–1968 PubMedCAS Google Scholar
Aggarwal S, Ichikawa H, Takada Y, Sandur SK, Shishodia S, Aggarwal BB (2006) Curcumine down-regulates expression of cell proliferation and anti-apoptotic and metastatic gene products through suppression of IKBα kinase and Akt activation. Mol Pharmacol 69: 195–206 PubMedCAS Google Scholar
Shapiro H, Bruck R (2005) Therapeutic potential of curcumin in non-alcoholic steatohepatitis. Nutr Res Rev 18: 212–221 CAS Google Scholar
Holt PR, Katz S, Kirshoff R (2005) Curcumin therapy in inflammatory bowel disease: A pilot study. Digest Dis Sci 50: 2191–2193 PubMed Google Scholar
Messeguer A, Planells-Cases R, Ferrer-Montiel A (2006) Physiology and pharmacology of the vanilloid receptor. Curr Neuropharmacol 4: 1–15 CAS Google Scholar
Appendino G, Munoz E, Fiebich BL (2003) TRPV1 (vanilloid receptor, capsaicin receptor) agonists and antagonists. Expert Opin Ther Patents 13: 1825–1837 CAS Google Scholar
Calixto JB, Kassuya CAL, André E, Ferreira J (2005) Contribution of natural products to the discovery of the transient receptor potential (TRP) channels family and their functions. Pharmacol Therapeut 106: 179–208 CAS Google Scholar
Bley KR (2004) Recent developments in transient receptor potential vanilloid receptor 1 agonist-based therapies. Expert Opin Inv Drug 13: 1445–1456 CAS Google Scholar
Urban L, Campbell EA, Panesar M, Patel S, Chaudhry N, Kane S, Buchheit KH, Sandells B, James IF (2000) In vivo pharmacology of SDZ-249665, a novel, non-pungent capsaicin analogue. Pain 89: 65–74 PubMedCAS Google Scholar
Park NS, Seong CM, Jung YS, Kim WB, Kim SH (2000) DA-5018 (Capsavanil, KR-25018). Drug Future 25: 1131–1137 CAS Google Scholar
Appendino G, Szallasi A (1997) Euphorbium: Modern research on its active principle resiniferatoxin, revives an ancient medicine. Life Sci 60: 681–696 PubMedCAS Google Scholar
Walker KM, Urban L, Medhurst SJ, Patel S, Panesar M, Fox AJ, McIntyre P (2003) The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 304: 56–62 PubMedCAS Google Scholar
Gaoni Y, Mechoulam R (1964) Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 86: 1646–1647 CAS Google Scholar
Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterisation of a cannabinoid receptor in rat brain. Mol Pharmacol 34: 605–613 PubMedCAS Google Scholar
Di Marzo V, Bifulco M, De Petrocelli L (2004) The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov 3: 771–784 Google Scholar
Lambert DM, Fowler CJ (2005) The endocannabinoid system: Drug targets, lead compounds, and potential therapeutic applications. J Med Chem 48: 5059–5087 PubMedCAS Google Scholar
Klein TW (2005) cannabinoid-based drugs as anti-inflammatory therapeutics. Nat Rev Immunol 5: 400–411 PubMedCAS Google Scholar
Burstein S (2001) Ajulemic acid. Antiinflammatory, oncolytic. Drug Future 26: 324–345 Google Scholar
Mechoulam R, Sumariwall PF, Feldmann M, Gallily R (2005) Cannabinoids in models of chronic inflammatory conditions. Phytochem Rev 4: 11–18 CAS Google Scholar
Burstein SH, Audette CA, Breuer A, Devane WA, Colodner S, Doyle SA, Mechoulam R (1992) Synthetic nonpsychotropic cannabinoids with potent antiinflammtoary, analgesic and leucocyte antiadhesion action. J Med Chem 35: 3135–3141 PubMedCAS Google Scholar
Fride E, Ponde D, Breuer A, Hanus L (2005) Peripheral, but not central effects of cannabidiol derivatives: mediation by CB1 and unidentified receptors. Neuropharmacology 48: 1117–1129 PubMedCAS Google Scholar
San Martin R, Briones R (1999) Industrial uses and sustainable supply of Quillaja saponaria (Rosaceae) saponins. Econ Bot 53: 302–311 Google Scholar
Kim YJ, Wang P, Navarro-Villalobos M, Rohde BD, Derryberry JM, Gin DY (2006) Synthesis of complex immunostimulants from Quillaja saponaria: Synthesis of the potent clinical immunoadjuvant QS-21Aapi. J Am Chem Soc 128: 11906–11915 PubMedCAS Google Scholar
Kensil CR, Patel U, Lennick M, Marciani D (1991) Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex. J Immunol 146: 431–437 PubMedCAS Google Scholar
Kensil CR (1996) Saponins as vaccine adjuvants. CritRev TherDrug 13: 1–55 CAS Google Scholar
Soltysik S, Wu JY, Recchia J, Wheeler DA, Newmann MJ, Coughlin RT, Kensil CR (1995) Structure/function studies of QS-21 adjuvant: Assessment of triterpene aldehyde and glucuronic acid roles in adjuvant function. Vaccine 13: 1403–1410 PubMedCAS Google Scholar
Liu G, Anderson C, Scaltreto H, Barbon J, Kensil CR (2002) QS-21 structure/function studies: Effect of acylation on adjuvant activity. Vaccine 20: 2808–2815 PubMedCAS Google Scholar
Marciani DJ, Reynolds RC, Pathak AK, Finley-Woodman K, May RD (2003) Fractionation, structural studies, and immunological characterization of the semi-synthetic Quillaja saponins derivative GPI-0100. Vaccine 21: 3961–3971 PubMedCAS Google Scholar
Kersten GFA, Spiekstra A, Beuvery EC, Crommelin DJA (1991) On the structure of immune-stimulating saponin-lipid complexes (iscoms). Biochim Biophys Acta 1062: 165–171 PubMedCAS Google Scholar
Kersten GFA, Crommelin DJA (1995) Liposomes and ISCOMS as vaccine formulations. Biochim Biophys Acta 1241: 117–138 PubMed Google Scholar
Bays H, Stein EA (2003) Pharmacotherapy for dyslipidemia — current therapies and future agents. Expert Opin Pharmaco 4: 1901–1918 CAS Google Scholar
Urizar NL, Moore DD (2003) Gugulipid: A natural cholesterol-lowering agent. Annu Rev Nutr 23: 303–313 PubMedCAS Google Scholar
Satayavati GV (1988) Gum guggul (Commiphora mukul) — the success story of an ancient insight leading to a modern discovery. Indian J Med Res 87: 327–335 Google Scholar
Ulbricht C, Basch E, Szapary P, Hammerness P, Axentsev S, Boon H, Kroll D, Garraway L, Vora M, Woods J (2005) Guggul for hyperlipidemia: A review by the Natural Standard Research Collaboration. Compl Ther Med 13: 279–290 Google Scholar
Urizar NL, Liverman AB, Dodds DT, Silva FV, Ordentlich P, Yan Y, Gonzalez FJ, Heyman RA, Mangelsdorf DJ, Moore DD (2002) A natural product that lowers cholesterol as an antagonist ligand for FXR. Science 296: 1703–1706 PubMedCAS Google Scholar
Patel MD, Thompson PD (2006) Phytosterols and vascular disease. Atherosclerosis 186: 12–19 PubMedCAS Google Scholar
Sudhop T, Lütjohann D, von Bergmann K (2005) Sterol transporters: targets of natural sterols and new lipid lowering drugs. Pharmacol Ther 105: 333–341 PubMedCAS Google Scholar
Kritchevsky D, Chen SC (2005) Phytosterols — health benefits and potential concerns: A review. Nutr Res 25: 413–428 CAS Google Scholar
De Melo EB, da Silveira Gomes A, Carvalho I (2006) α-and β-glucosidase inhibitors: Chemical structure and biological activity. Tetrahedron 62: 10277–10302 Google Scholar
Zou W (2005) C-glycosides and aza-C-glycosides as potential glycosidase and glycosyltransferase inhibitors. Curr Top Med Chem 5: 1363–1391 PubMedCAS Google Scholar
Asano N, Nash RJ, Molyneux RJ, Fleet GWJ (2000) Sugar-mimic glycosidase inhibitors: Natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron-Asymmetr 11: 1645–1680 CAS Google Scholar
Butters TD, Dwek RA, Platt FM (2005) Imino sugars inhibitors for treating the lysosomal glycosphingolipidoses. Glycobiology 15: 43R–52R PubMedCAS Google Scholar
Jia W, Gao W, Tang L (2003) Antidiabetic herbal drugs officially approved in China. Phytother Res 17: 1127–1134 PubMed Google Scholar
Grover JK, Yadav S, Vats V (2002) Medicinal plants of India with antidiabetic potential. J Ethnopharmacol 81: 81–100 PubMedCAS Google Scholar
Yeh GY, Eisenberg DM, Kaptschuk TJ, Phillips RS (2003) Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care 26: 1277–1294 PubMedCAS Google Scholar
Jung M, Park M, Lee HC, Kang YH, Kang ES, Kim SK (2006) Antidiabetic agents from medicinal plants. Curr Med Chem 13: 1203–1218 PubMedCAS Google Scholar
Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration. Nat Med 10: S2–S9 PubMed Google Scholar
Huber A, Stuchbury G, Bürkle A, Burnell J, Münch G (2006) Neuroprotective therapies for Alzheimer’s disease. Curr Pharm Design 12: 705–717 CAS Google Scholar
Francis PT, Nordberg A, Arnold SE (2005) A preclinical view of cholinesterase inhibitors in neuroprotection: Do they provide more than symptomatic benefits in Alzheimer’s disease? Trends Pharmacol Sci 26: 104–111 PubMedCAS Google Scholar
Houghton PJ, Ren Y, Howes MJ (2006). Acetylcholinesterase inhibitors from plants and fungi. Nat Prod Rep 23: 181–199 PubMedCAS Google Scholar
Wang R, Yan H, Tang XC (2006) Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol Sin 27: 1–26 PubMed Google Scholar
Kozikowski AP, Tückmantel W (1999) Chemstry, pharmacology, and clinical efficacy of the Chinese nootropic agent huperzine A. Acc Chem Res 32: 641–650 CAS Google Scholar
Ma X, Gang DR (2004) The Lycopodium alkaloids. Nat Prod Rep 21: 752–772 PubMedCAS Google Scholar
Marco-Contelles J, do Carmo Carreiras M, Rodriguez C, Villaroya M, Garcia AG (2006) Synthesis and pharmacology of galanthamine. Chem Rev 106: 116–133 PubMedCAS Google Scholar
Mukherjee PK, Kumar V, Mal M, Houghton PJ (2007) Acetylcholinesterase inhibitors from plants. Phytomedicine 14: 289–300 PubMedCAS Google Scholar
Zimmermann M, Colchiaghi F, Cattabeni F, Di Luca M (2002) Ginkgo biloba extract: From molecular mechanisms to the treatment of Alzheimer’s disease. Cell Mol Biol 48: 613–623 PubMedCAS Google Scholar
Christen Y (2004) Ginkgo biloba and neurodegenerative disorders. Frontiers Biosci 9: 3091–3104 CAS Google Scholar
Gertz HJ, Kiefer M (2004) Review about Ginkgo biloba special extract EGb 761 (Ginkgo). Curr Pharm Design 10: 261–264 CAS Google Scholar
Andrieu S, Gilette S, Amouyal K, Nourashemi F, Reynish W, Ousset PJ, Albarede JL, Vellas B, Grandjean H (2003) Association of Alzheimer’s disease onset with Ginkgo biloba and other symptomatic cognitive treatments in a population of women aged 75 years and older from the EPIDOS study. J Gerontol A Biol Sci Med Sci 58: 372–377 PubMed Google Scholar
NG TP, Chiam PC, Lee T, Chua HC, Lim L, Kua EH (2006) Curry consumption and cognition function in the elderly. Am J Epidemiol 164: 898–906 PubMed Google Scholar
Mancuso C, Scapagnini G, Curro D, Stella AMG, De marco C, Butterfield DA, Calabrese V (2007). Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Frontiers Biosci 12: 1107–1123 CAS Google Scholar
Lim GP, Chu T, Yang FS, Beech W, Frautschy SA, Cole GM (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21: 8370–8377 PubMedCAS Google Scholar
Yang FS, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2006) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280: 5892–5901 Google Scholar
Langlois N, Gueritte F, Langlois Y, Potier P (1976) Application of a modification of Polonovski reaction to synthesis of vinblastine-type alkaloids. J Am Chem Soc 98: 7017–7024 PubMedCAS Google Scholar
Mishra P, Uniyal GC, Sharma S, Kumar S (2001) Pattern of diversity of morphological and alkaloid yield related traits among periwinkle Catharanthus roseus accessions collected from and around Indian subcontinent. Genet Resour Crop Ev 48: 273–286 Google Scholar
Schmid W, Balz JP (2005) Cultivation of Ginkgo biloba L. on three continents. Acta Horticult 676: 177–180 Google Scholar
Suffness M (1993) Taxol — from discovery to therapeutic use. Annu Rep Med Chem 28: 305–314 CAS Google Scholar
Zhong JJ (2002) Plant cell culture for production of paclitaxel and other taxanes. J Biosci Bioeng 94: 591–599 PubMedCAS Google Scholar
Tabata H (2006) Production of paclitaxel and the related taxanes by cell suspension cultures of Taxus species. Curr Drug Target 7: 453–461 CAS Google Scholar
Farina V, Brown JD (2006) Tamiflu: the supply problem. Angew Chem Int Ed 45: 2–7 Google Scholar
Farkya S, Bisaria VS, Srivastava AK (2004) Biotechnological aspects of the production of the anticancer drug podophyllotoxin. Appl Microbiol Biot 65: 504–519 CAS Google Scholar
Bedir E, Tellez M, Lata H, Khan I, Cushman KE, Moraes RM (2006) Post-harvest and scale up extraction of American mayapple leaves for podophyllotoxin production. Ind Crop Prod 24: 3–7 CAS Google Scholar
Soeharto DD, Gyllenhaal C, Fong HHS, Xuan LT, Hiep NT, Hung NV, Bich TQ, Southavong B, Sydara K, Pezzuto JM (2004) The UIC ICBG (University of Illinois at Chicago International Cooperative Biodiversity Group) memorandum of agreement: A model of benefit-sharing arrangement in natural products drug discovery and development. J Nat Prod 67: 294–299 Google Scholar
Iwu MM (1996) Implementing the biodiversity treaty: How to make international cooperative agreements work. Trends Biotechnol 14: 78–83 CAS Google Scholar
Anon. (1994) ‘Bio-piracy’ costs developing world 5 billion a year. Scrip 1980: 19 Google Scholar
Rausser GC, Small AA (2000) Valuing research leads: Bioprospecting and the conservation of genetic resources. J Polit Econ 108: 173–206 Google Scholar
Dalton R (2006) Cashing in on the rich coast. Nature 442: 567–569 Google Scholar
Coley PD, Heller MV, Aizprua R, Arauz B, Flores N, Correa M, Gupta M, Solis PN, Ortega-Barria E, Romero LI et al (2003) Using ecological criteria to design plant collection strategies for drug discovery. Front Ecol Environ 1: 421–428 Google Scholar
Balandrin MF, Kinghorn AD, Farnsworth NR (1993) Plant-derived natural products in drug discovery and development — an overview. ACS Symp Series 534: 2–12 CAS Google Scholar
Kinghorn AD (2001) Pharmacognosy in the 21st century. J Pharm Pharmacol 53: 135–148 CAS Google Scholar
Shu YZ (1998) Recent natural products based drug development: A pharmaceutical industry perspective. J Nat Prod 61: 1053–1071 PubMedCAS Google Scholar