Functional morphology of gills in larval amphibians (original) (raw)
Abstract
Scanning electron microscopy and vascular casting were used to study the morphology and vascular anatomy of the fully developed internal gills of Litoria ewingi tadpoles and the external gills of mexican axolotls, Ambystoma mexicanum.
The exchange units in L. ewingi consist of simple capillary loops in which blood flow should be well described by the Poiseuille relation. The random orientation of loops implies that there is no special con- or contra-flow arrangement of blood and water flows. In A. mexicanum gills blood flows through exchange sites comprising a double sheet of capillary space where the mathematics of sheet flow probably apply.
In both species, the gills are regarded as being important sites of aquatic gas exchange.
Branchial shunts linking afferent and efferent branchial arteries are present in both species.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
- Burggren, W.W. and West, N.H. (1982). Changing respiratory importance of gills, lungs and skin during metamorphosis in the bullfrog Rana catesbeiana. Respir. Physiol. 47; 151–164.
CAS Google Scholar - Burggren, W.W. and Mwalukoma, A. (1983). Influence of chronic hypoxia and hyperoxia on gas exchange processes in larval and adult bullfrogs (Rana catesbeiana). I. Morphological responses of lungs, skin and gills. J. Exp. Biol. 105: 191–203.
PubMed CAS Google Scholar - Czopek, J. (1957). The vascularisation of respiratory surfaces in Ambystoma mexicanum(Cope) in ontogeny. Zool. Polon. 8: 131–149.
Google Scholar - Czopek, J. (1965). Quantitative studies on the morphology of the respiratory surfaces in amphibians. Acta. Anat. 62: 296–323.
Article PubMed CAS Google Scholar - De Saint-Aubain, M.L. (1981). Shunts in the gill filament in tadpoles of _Rana temporaria_and Bufo buto(Amphibia, Anura). J. Exp. Zool. 217: 143–145.
Article Google Scholar - Farrell, A.P. (1980). Gill morphometrics, vessel dimensions, and vascular resistance in ling cod, Ophiodon elongates. Am. J. Zool. 58: 807–818.
Google Scholar - Figge, F.H.J. (1936). The differential reaction of the blood vessels of a branchial arch of Ambystoma tigrinum(Colorado Axolotl). I..[he reaction to adrenaline, oxygen and CO,. _Physiol. Zool._ 9: 79–101.
Google Scholar - Folkow, B. and Neil, E. (1970). Circulation. London: Oxford U.P.
Google Scholar - Gosner, K.L. (1960). A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183–190.
Google Scholar - Gradwell, N. (1969). The respiratory importance of the tadpole operculum in Rana catesbeiana. Can. J. Zool. 47: 1239–1243.
Article Google Scholar - Gradwell, N. (1972a). Gill irrigation in Rana catesbeiana. Part I. On the anatomical basis. Can. J. Zool. 50: 481–499.
Article CAS Google Scholar - Gradwell, N. (1972b). Gill irrigation in Rana catesbeiana, Part II. On the musculoskeletal mechanism. Can. J. Zool. 50: 481–499.
Article CAS Google Scholar - Gradwell, N. (1975). Experiments on oral suction and gill breathing in five species of Australian tadpoles (Anura: Hylidae and Lcptodactylidae). J. Zool. 177: 81–98.
Article Google Scholar - Hutchison, V.H. Whitford, W.G. and Kohl, M. (1968). Relation of body size and surface area to gas exchange in anurans. Physiol. Zool. 41: 65–85.
Google Scholar - Johansen K. (1970). Air breathing in fishes. In: Fish Physiology. W.S. Hoar and D.J. Randall, eds., Academic Press, N.Y., London. pp. 361–411.
Google Scholar - Kenny, J.S. (1969). Feeding mechanisms in anuran larvae. J. Zool. 157: 225–246.
Article Google Scholar - Marshall, A.M. (1893). The development of the frog. In: Vertebrate Embryology. Smith, Elder and Co. London, pp. 160–185.
Google Scholar - Marshall, A.M. (1932). The frog: an introduction to anatomy, histology and embryology. Macmillan and Co., Ltd., London, pp. 131–140.
Google Scholar - Mcllroy, M.B. (1965). Pulmonary shunts. In: Handbook of Physiology, Section 3, Respiration, Volume II. W.O. Fenn and H. Rahn, eds.. Amer. Physiol. Soc., Washington D.C., pp. 1519–1524.
Google Scholar - Millard, N. (1945). The development of the arterial system of Xenopus laevis, including experiments on the destruction of the larval arches. Trans. R. Soc. S. Afr. 30: 217–234.
Article Google Scholar - Nonnotte, G. (1981). Cutaneous respiration in six freshwater teleosts. Comp. Biochem. Physiol. 70A: 541–544.
Article Google Scholar - Satchell, G.H. (1976). The circulatory system of air breathing fish. In: Respiration in Amphibious Vertebrates. G.M. Hughes. cd., Academic Press, London, pp. 105–123.
Google Scholar - Schulze, F.E. (1889). Uber die inneren Kiemen der Batrachierlarven. I. Mittheilung. Uber das epithel der Lippen, der Mundrachen und Kiemenhohle erwachsener Larven von Pelobates fuscus. Abh. Akad. Wiss. Berl. 1: 58.
Google Scholar - Smith, D.G. and Campbell, G. D. (1976). Anatomy of the pulmonary vascular bed in the toad Bufo marinus. Cell Tiss. Res. 165: 199–213.
CAS Google Scholar - Smith, D.G. and Rapson, L. (1977). Differences in pulmonary microvascular anatomy between _Bufo marinus_and Xenopus laevis. Cell Tissue Res. 178: 1–15.
Article PubMed CAS Google Scholar - Sobin, S.S., Tremer, H.M. and Fung, Y.C. (1970). Morphometric basis of the sheet flow concept of the pulmonary alveolar microcirculation in the cat. Cire. Res. 26: 397–414.
CAS Google Scholar - Strawinski, S. (1956). Vascularisation of respiratory surfaces in ontogeny of the edible frog, Rana catesbeiana. Zool. Pol. 7: 327–365.
Google Scholar - Wassersug, R. (1980). Internal oral features of larvae from eight Anuran families: functional, systematic, evolutionary and ecological considerations. Univ. of Kansas Museum of Nat. Hist., Misc. Publ. No. 68.
Google Scholar - Wassersug, R.J., Paul, R.D. and Feder, M. E. (1981). Cardiorespiratory synchrony in anuran larvae (Xenopus laevis, _Pachymedusa dacnicolor_and Rana berlandieri). Comp. Biochem. Physiol. 70A: 329–334.
Article Google Scholar
Author information
Author notes
- Rosemary McIndoe
Present address: Department of Zoology, Monash University, Clayton, Victoria, 3168, Australia - D. G. Smith
Present address: Natural History Unit, Australian Broadcasting Corporation, P.O. Box 9994 G.P.O., Melbourne, Victoria, 3001, Australia
Authors and Affiliations
- Department of Zoology, University of Melbourne, Parkville, Victoria, 3052, Australia
Rosemary McIndoe & D. G. Smith
Authors
- Rosemary McIndoe
You can also search for this author inPubMed Google Scholar - D. G. Smith
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
- Department of Zoology, University of Adelaide, G.P.O. Box 498, 5001, Adelaide, S.A., Australia
Roger S. Seymour
Rights and permissions
Copyright information
© 1984 Dr W. Junk Publishers, Dordrecht
About this chapter
Cite this chapter
McIndoe, R., Smith, D.G. (1984). Functional morphology of gills in larval amphibians. In: Seymour, R.S. (eds) Respiration and metabolism of embryonic vertebrates. Perspectives in vertebrate science, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6536-2\_4
Download citation
- .RIS
- .ENW
- .BIB
- DOI: https://doi.org/10.1007/978-94-009-6536-2\_4
- Publisher Name: Springer, Dordrecht
- Print ISBN: 978-94-009-6538-6
- Online ISBN: 978-94-009-6536-2
- eBook Packages: Springer Book Archive