Localization of grasp representations in humans by positron emission tomography (original) (raw)
References
Arbib MA (1981) Perceptual structures and distributed motor control. In: Brooks VB (ed) Motor control (Handbook of physiology, sect 2, The nervous system, vol II, part 1) American Physiological Society, Bethesda, pp 1449–1480 Google Scholar
Bailey P, Bonin G von (1951) The isocortex of man. University of Illinois Press, Urbana Google Scholar
Bonda E, Petrides M, Frey S, Evans AC (1994) Frontal cortex involvement in organized sequences of hand movements: evidence from a positron emission tomography study. Soc Neurosci Abstr 20: 152.6 Google Scholar
Campbell AW (1905) Histological studies on the localization of cerebral function. Cambridge University Presss, New York Google Scholar
Colebatch JG, Deiber M-P, Passingham RE, Friston KJ, Frackowiak RSJ (1991) Regional cerebral blood flow during voluntary arm and hand movements in human subjects. J Neurophysiol 65: 1392–1401 Google Scholar
Decety J, Sjoholm H, Ryding E, Stenberg G, Ingvar DH (1990) The cerebellum participates in mental activity: tomographic measurements. Brain Res 535: 313–317 Google Scholar
Decety J, Perani D, Jeannerod M, Bettinardi V, Tadary B, Woods R, Mazziotta JC, Fazio F (1994) Mapping motor representations with PET. Nature 371: 600–602 Google Scholar
Deiber M-P, Passingham RE, Colebatch JG, Friston KJ, Nixon PD, Frackowiak RSJ (1991) Cortical areas and the selection of movement: a study with PET. Exp Brain Res 84: 393–402 Google Scholar
Dum RP, Strick PL (1991) The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11: 667–689 Google Scholar
Economo C von (1929) The cytoarchitectonics of the human cerebral cortex. Oxford University Press, London Google Scholar
Fox PT, Mintun MA, Raichle ME, Herscovitch P (1984) A non-invasive approach to quantitative functional brain mapping with H215O and positron emission tomography. J Cereb Blood Flow Metab 4: 329–333 Google Scholar
Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ (1991) Comparing functional (PET) images: the assessement of significant change. J Cereb Blood Flow Metab 11: 690–699 Google Scholar
Fuster JM (1995) Memory in the cerebral cortex. MIT Press, Cambridge Google Scholar
Gallese V, Murata A, Kaseda M, Niki N, Sakata H (1994) Deficit of hand preshaping after muscimol injection in monkey parietal cortex. Neuroreport 5: 1525–1529 Google Scholar
Gentilucci M, Fogassi L, Luppino G, Matelli M, Camarda R, Rizzolatti G (1988) Functional organization of inferior area 6 in the macaque monkey. I. Somatotopy and the control of proximal movements. Exp Brain Res 71: 475–490 Google Scholar
Godschalk M, Lemon RN, Kuypers HGJM, Ronday HK (1984) Cortical afferents and efferents of monkey postarcuate area: an anatomical and electrophysiological study. Exp Brain Res 56: 410–424 Google Scholar
Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Plum F, Mountcastle V (eds) Higher functions of the brain. (Handbook of physiology, sect 1, The nervous system, vol V) American Physiology Society, Bethesda, pp 373–417 Google Scholar
Grafton ST, Huang SC, Mahoney DK, Mazziotta JC, Phelps ME (1990) Analysis of optimal reconstruction filters for maximizing signal to noise ratios in PET cerebral blood flow studies (abstract). J Nucl Med 31: 865 Google Scholar
Grafton ST, Woods RP, Mazziotta JC, Phelps ME (1991) Somatotopic mapping of the primary motor cortex in man: activation studies with cerebral blood flow and PET. J Neurophysiol 66: 735–743 Google Scholar
Grafton ST, Mazziotta JC, Woods RP, Phelps ME (1992) Human functional anatomy of visually guided finger movements. Brain 115: 565–587 Google Scholar
Grafton ST, Woods RP, Tyszka JM (1994) Functional imaging of procedural motor learning: relating cerebral blood flow with individual subject performance. Hum Brain Mapp 1: 221–234 Google Scholar
Grafton ST, Fagg AH, Woods RP, Arbib MA (1996) Functional anatomy of pointing and grasping in humans. Cereb Cortex 6: 226–237 Google Scholar
Haxby JV, Grady CL, Horwitz B, Ungerleider LG, Mishkin M, Carson RE, Herscovitch P, Schapiro MB, Rapoport SI (1991) Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc Natl Acad Sci USA 88: 1621–1625 Google Scholar
He S-Q, Dum RP, Strick PL (1993) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. J Neurosci 13: 952–980 Google Scholar
He S-Q, Dum RP, Strick PL (1995) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J Neurosci 15: 3284–3306 Google Scholar
Hepp-Reymond MC, Husler EJ, Maier MA, Qi HX (1994) Forcerelated neuronal activity in two regions fo the primate ventral premotor cortex. Can J Physiol Pharmacol 72: 571–579 Google Scholar
Herscovitch P, Markham J, Raichle ME (1983) Brain blood flow measured with intravenous H2 15O. I. Theory and error analysis. J Nucl Med 24: 782–789 Google Scholar
Jeannerod M (1988) The neural and behavioural organization of goal-directed movement. Oxford University Press, Oxford Google Scholar
Jeannerod M (1994) The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci 17: 187–245 Google Scholar
Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18: 314–320 Google Scholar
Jenkins IH, Brooks DJ, Nixon PD, Frackowiak RSJ, Passingham RE (1994) Motor sequence learning: a study with positron emission tomography. J Neurosci 14: 3775–3790 Google Scholar
Kimura D (1993) Neuromotor mechanisms in human communication. Oxford University Press, New York Google Scholar
Kurata K (1993) Premotor cortex of monkeys: set- and movementrelated activity reflecting amplitude and direction of wrist movements. J Neurophysiol 69: 187–200 Google Scholar
Kurata K, Tanji J (1986) Premotor cortex neurons in macaques: activity before distal and proximal forelimb movements. J Neurosci 6: 403–411 Google Scholar
Leinonen L, Nyman G (1979) Functional properties of cells in antero-lateral part of area 7 associative face area of awake monkeys. Exp Brain Res 34: 321–333 Google Scholar
Luppino G, Matelli M, Camarda RM, Gallese V, Rizzolatti G (1991) Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: an intracortical microstimulation study in the macaque monkey. J Comp Neurol 311: 463–482 Google Scholar
Matelli M, Camarda M, Glickstein M, Rizzolatti G (1986) Afferent and efferent projections of the inferior area 6 in the macaque monkey. J Comp Neurol 251: 281–298 Google Scholar
Matelli M, Luppino G, Rizzolatti G (1991) Architecture of superior and mesial area 6 and of adjacent cingulate cortex. J Comp Neurol 311: 445–462 Google Scholar
Matelli M, Rizzolatti G, Bettinardi V, Gilardi MC, Perani D, Rizzo G, Fazio F (1993) Activation of precentral and mesial motor areas during the execution of elementary proximal and distal arm movements: a PET study. Neuroreport 4: 1295–1298 Google Scholar
Matsumura M, Kubota K (1979) Cortical projections of hand-arm motor area from postarcuate area in macaque monkey: a histological study of retrograde transport of horse radish peroxidase. Neurosci Lett 11: 241–246 Google Scholar
Matsuzaka Y, Aizawa H, Tanji J (1992) A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task. J Neurophysiol 68: 653–662 Google Scholar
Mazziotta JC, Huang S-C, Phelps ME, Carson RE, MacDonald NS, Mahoney K (1985) A noninvasive positron computed tomography technique using oxygen-15-labeled water for the evaluation of neurobehavioral task batteries. J Cereb Blood Flow Metab 5: 70–78 Google Scholar
Milner AD, Goodale MA (1995) The visual brain in action. Oxford University Press, Oxford Google Scholar
Muakkassa KF, Strick PL (1994) Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized “premotor” areas. Brain Res 177: 176–182 Google Scholar
Neter J, Wasserman W, Kutner MH (1990) Applied linear statistical models. Irwin, Boston Google Scholar
Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9: 97–113 Google Scholar
Orgogozo JM., Larsen B (1979) Activation of the supplementary motor area during voluntary movement in man suggests it works as a supramotor area. Science 206: 847–850 Google Scholar
Parsons LM, Fox PT, Downs JH, Glass T, Hirsch TB, Martin CC, Jerabek PA, Lancaster JL (1995) Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature 375: 54–56 Google Scholar
Passingham R (1993) The frontal lobes and voluntary action. Oxford University Press, Oxford Google Scholar
Pellegrino G di, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91: 176–180 Google Scholar
Perrett DI, Harries MH, Bevan R, Thomas S, Benson PJ, Mistlin AJ, Chitty AJ, Hietanen JK, Ortega JE (1989) Frameworks of analysis for the neural representation of animate objects and actions. J Exp Biol 146: 87–113 Google Scholar
Perrett DI, Mistlin AJ, Harries MH, Chitty AJ (1990) Understanding the visual appearance and consequence of hand actions. In: Goodale MA (ed) Vision and action: the control of grasping. Ablex, Norwood, NJ, pp 163–180
Peterson SE, Fox PT, Posner MI, Mintun M, Raichle ME (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331: 585–589 Google Scholar
Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228: 105–116 Google Scholar
Petrides M, Pandya DN (1994) Comparative architectonic analysis of the human and the macaque frontal cortex. In: Boiler F, Grafman J (ed) Handbook of neuropsychology. Elsevier, New York, pp 17–58 Google Scholar
Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex (in press)
Raichle ME, Martin WRW, Herscovitch P (1983) Brain blood flow measured with intravenous HH 152 O. II. Implementation and validation. J Nucl Med 24: 790–798 Google Scholar
Rao SM, Binder JR, Bandettini PA, Hammeke TA, Yetkin FZ, Jesmanowicz A, Lisk LM, Morris GL, Mueller WM, Estkowski LD, Wong EC, Haughton VM, Hyde JS (1993) Functional magnetic resonance imaging of complex human movements. Neurology 43: 2311–2318 Google Scholar
Rizzolatti G, Scandolara C, Gentilucci G, Matelli M, Gentiluuci M (1981) Afferent properties of peri-arcuate neurons in macaque monkeys. II. Visual responses. Behav Brain Res 2: 147–163 Google Scholar
Rizzolatti GM, Gentilucci L, Fogassi G, Luppino G, Matelli M, Ponzoni-Maggi S (1987) Neurons related to goal-directed motor acts in inferior area 6 of the macaque monkey. Exp Brain Res 67: 220–224 Google Scholar
Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, Matelli M (1988) Functional organization of inferior area 6 in the macaque monkely. II. Area F5 and the control of distal movements. Exp Brain Res 71: 491–507 Google Scholar
Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996a) Premotor cortex and the recognition of motor actions. Cogn Brain Res 3: 131–141 Google Scholar
Rizzolatti G, Fadiga L, Matelli M, Bettinardi V, Perani D, Fazio F (1996b) Localization of grasp representations in humans by PET. 1. Observation versus execution. Exp Brain Res (in press)
Roland PE, Larsen B, Lassen NA, Skinhøj E (1980) Supplementary motor area and other cortical areas in organization of voluntary movements in man. J Neurophysiology 43: 118–136 Google Scholar
Seltzer B, Pandya DN (1978) Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res 149: 106–109 Google Scholar
Sergent J, Zuck E, Terriah S, MacDonald B (1992) Distributed neural network underlying musical sight-reading and keyboard performance. Science 257: 106–109 Google Scholar
Stephan KM, Fink GR, Passingham RE, Silbersweig D, Ceballos-Baumann AO, Frith CD, Frackowiak RSJ (1995) Imaging the execution of movements. J Neurophysiol 73: 373–386 Google Scholar
Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the brain. Thieme Medical, New York Google Scholar
Tanji J (1994) The supplementary motor area in the cerebral cortex. Neurosci Res 19: 251–268 Google Scholar
Thach WT (1996) On the specific role of the cerebellum in motor learning and cognition: cluses from PET activation and lesion studies in man. Behav Brain Sci
Tyszka JM, Grafton ST, Chew W, Woods RP, Colletti PM (1994) Parcellation of mesial frontal motor areas during ideation and movement using functional magnetic resonance imaging at 1.5 Tesla. Ann Neurol 35: 746–749 Google Scholar
Watson JD, Myers R, Frackowiak RS, Hajnal JV, Woods RP, Mazziotta JC, Shipp S, Zeki S (1993) Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb Cortex 3: 79–94 Google Scholar
Webster MJ, Bachevalier J, Ungerleider LG (1994) Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex 4: 470–483 Google Scholar
Weisendanger M (1986) Recent developments in studies of the supplementary motor area of primates. Rev Physiol Biochem Pharmacol 103: 1–59 Google Scholar
Wise SP, Desimone R (1988) Behavioral neurophysiology: insights into seeing and grasping. Science 242: 736–741 Google Scholar
Woods RP, Cherry SR, Mazziotta JC (1992) Rapid automated algorithm for aligning and reslicing PET images. J Comp Assist Tomog 115: 565–587 Google Scholar
Woods RP, Mazziotta JC, Cherry SR (1993) Automated image registration. Ann Nucl Med [Suppl] 7: S70 Google Scholar
Woods RP, Iacoboni M, Grafton ST, Mazziotta JC (1996) Threeway analysis of variance. In: Myers R, Cunningham V, Bailey D (ed) Quantification of brain function using PET. Academic, New York, pp 353–358 Google Scholar
Worsley KJ, Evans AC, Marrett S, Neelin P (1992) A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12: 900–918 Google Scholar
Zatorre RJ, Evans AC, Meyer E, Gjedde A (1992) Lateralization of phonetic and pitch discrimination in speech processing. Science 256: 846–849 Google Scholar
Zilles K, Schlaug G, Geyger S, Luppino G, Matelli M, Qu M, Schormann T (1996) Anatomy and transmitter receptors of the supplementary motor areas in the human and non human primate brain. Adv Neurol 70: 29–43 Google Scholar