Current-to-frequency transduction in CA1 hippocampal pyramidal cells: Slow prepotentials dominate the primary range firing (original) (raw)
- Agajanian GK, Vandermaelen CP (1982) Intracellular recordings from serotonergic dorsal raphe neurons: Pacemaker potentials and the effect of LSD. Brain Res 238: 463–469
Google Scholar - Alger BE, Nicoll RA (1980) Epileptiform burst afterhyperpolarization: Calcium-dependent potassium potential in hippocampal CA1 pyramidal cells. Science 210: 1122–1124
Google Scholar - Baldissera F, Gustafsson B (1974) Firing behaviour of a neurone model based on the afterhyperpolarization conductance time course. First interval firing. Acta Physiol Scand 91: 528–544
Google Scholar - Benardo LS, Masukawa LM, Prince DA (1982) Electrophysiology of isolated hippocampal pyramidal dendrites. J Neurosci 2: 1614–1622
Google Scholar - Bland BH, Andersen P, Ganes T, Sveen O (1980) Automated analysis of rhythmicity of physiologically identified hippocampal formation neurons. Exp Brain Res 38: 205–219
Google Scholar - Brown TH, Wong RKS, Prince DA (1979) Spontaneous miniature synaptic potentials in hippocampal neurons. Brain Res 177: 194–199
Google Scholar - Calvin WH, Sypert GW (1976) Fast and slow pyramidal tract neurons: An intracellular analysis of their contrasting repetitive firing properties in the cat. J Neurophysiol 39: 420–434
Google Scholar - Connor JA, Stevens CF (1971a) Inward and delayed outward membrane currents in isolated neural somata under voltage clamp. J Physiol (Lond) 213: 1–19
Google Scholar - Connor JA, Stevens CF (1971b) Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J Physiol (Lond) 213: 31–54
Google Scholar - Connors BW, Gutnick JM, Prince DA (1982) Electrophysiological properties of neocortical neurons in vitro. J Neurophysiol 48: 1302–1320
Google Scholar - Creutzfeldt OD, Lux HD, Nacimiento AC (1964) Intracelluläre Reizung corticaler Nervenzellen. Pflügers Arch Ges Physiol 281: 129–151
Google Scholar - Davson H (1967) Physiology of the cerebrospinal fluid. Churchill, London
Google Scholar - Eide E, Fedina L, Jansen J, Lundberg A, Vyklicky L (1969) Properties of Clarke's column neurones. Acta Physiol Scand 77: 125–144
Google Scholar - Fox SE, Ranck JB jr (1975) Localization and anatomical identification of theta and complex spike cells in dorsal hippocampal formation of rats. Exp Neurol 49: 299–313
Google Scholar - Fujita Y (1975) Two types of depolarizing after-potentials in hippocampal pyramidal cells of rabbits. Brain Res 94: 435–446
Google Scholar - Gjerstad L, Langmoen IA, Andersen P (1978) Factors affecting epileptiform pyramidal cell discharges in vitro. In: Meinardi H, Rowan AJ (eds) Advances in epileptology. Swets & Zeitlinger, Amsterdam, pp 443–449
Google Scholar - Granit R, Kernell D, Lamarre Y (1966) Algebraical summation in synaptic activation of motoneurones firing within the “primary range” to injected currents. J Physiol (Lond) 187: 379–399
Google Scholar - Granit R, Kernell D, Shortess GK (1963a) Quantitative aspects of repetitive firing of mammalian motoneurones, caused by injected currents. J Physiol (Lond) 168: 911–931
Google Scholar - Granit R, Kemell D, Shortess GK (1963b) The behaviour of mammalian motoneurones during long-lasting orthodromic, antidromic and transmembrane stimulation. J Physiol (Lond) 169: 743–754
Google Scholar - Green KF, Rawlins JN (1979) Hippocampal theta in rats under urethane: Generators and phase relations. Electroencephalogr Clin Neurophysiol 47: 420–429
Google Scholar - Gustafsson B, Galvan M, Grafe P, Wigström H (1982) A transient outward current in a mammalian central neurone blocked by 4-aminopyridine. Nature 299: 252–254
Google Scholar - Gustafsson B, Lindström S, Zangger P (1978) Firing behaviour of dorsal spino-cerebellar tract neurones. J Physiol (Lond) 275: 321–343
Google Scholar - Gustafsson B, Wigström H (1981a) Evidence for two types of after-hyperpolarization in CA1 pyramidal cells in the hippocampus. Brain Res 206: 462–468
Google Scholar - Gustafsson B, Wigström H (1981b) Shape of frequency-current curves in CA1 pyramidal cells in the hippocampus. Brain Res 223: 417–421
Google Scholar - Hagiwara S, Kusano K, Saito N (1961) Membrane changes of Onchidium nerve cell in potassium-rich-media. J Physiol (Lond) 155: 470–489
Google Scholar - Halliwell JV, Adams PR (1982) Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res 250: 71–92
Google Scholar - Hodgkin AL (1948) The local electric changes associated with repetitive action in a non-medullated nerve. J Physiol (Lond) 107: 165–181
Google Scholar - Hotson JR, Prince DA, Schwartzkroin PA (1979) Anomalous inward rectification in hippocampal neurons. J Neurophysiol 42: 3, 889–895
Google Scholar - Hotson JR, Prince DA (1980) A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons. J Neurophysiol 43: 409–419
Google Scholar - Ito M, Oshima T (1965) Electrical behaviour of the motoneurone membrane during intracellularly applied current steps. J Physiol (Lond) 180: 607–635
Google Scholar - Johnston D, Hablitz JJ, Wilson WA (1980) Voltage clamp discloses slow inward current in hippocampal burst-firing neurones. Nature 286: 391–393
Google Scholar - Kandel ER (1964) Electrical properties of hypothalamic neuroendocrine cells. J Gen Physiol 47: 691–717
Google Scholar - Kandel ER, Spencer WA, Brindley FJ (1961) Electrophysiology of hippocampal neurons. I. Sequential invasion and synaptic organization. J Neurophysiol 24: 225–241
Google Scholar - Kernell D (1965a) The adaptation and the relation between discharge frequency and current strength of cat lumbosacral motoneurones stimulated by long-lasting injected currents. Acta Physiol Scand 65: 65–73
Google Scholar - Kernell D (1965b) High-frequency repetitive firing of cat lumbosacral motoneurones stimulated by long-lasting injected currents. Acta Physiol Scand 65: 74–86
Google Scholar - Kernell D, Sjöholm H (1973) Repetitive impulse firing: Comparison between neurone models based on ‘voltage clamp equations’ and spinal motoneurones. Acta Physiol Scand 87: 40–56
Google Scholar - Koike M, Mano N, Okada Y, Oshima T (1970) Repetitive impulses generated in fast and slow pyramidal tract cells by intracellularly applied current steps. Exp Brain Res 11: 263–281
Google Scholar - Kubie JL, Ranck JB jr (1983) Sensory-behavioural correlates in individual hippocampus neurons in three situations: space and context. In: Seifert W (ed) Molecular, cellular and behavioural neurobiology of the hippocampus. Academic Press, New York, pp 632
Google Scholar - Lanthorn T, Storm J, Andersen P (1981) Responses of hippocampal CA1 pyramidal neurones in vitro to depolarizing currents of long duration. Neurosci Lett 7: S 383
Google Scholar - Llinás R, Sugimori M (1980) Electrophysiological properties of in vivo Purkinje cell somata in mammalian cerebellar slices. J Physiol (Lond) 305: 171–195
Google Scholar - Madison DV, Nicoll RA (1982) Noradrenaline blocks accomodation of pyramidal cell discharge in the hippocampus. Nature 299: 636–638
Google Scholar - Masukawa LM, Benardo LS, Prince DA (1982) Variations in electrophysiological properties of hippocampal neurons in different subfields. Brain Res 242: 341–344
Google Scholar - Ranck JB jr (1973) Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. Exp Neurol 41: 461–531
Google Scholar - Schwartzkroin PA (1975) Characteristics of CA1 neurons recorded intracellularly in the hippocampal in vitro slice preparation. Brain Res 85: 423–436
Google Scholar - Schwartzkroin PA (1978) Secondary range rhythmic spiking in hippocampal neurons. Brain Res 149: 247–250
Google Scholar - Schwartzkroin PA, Prince DA (1977) Penicillin-induced epileptiform activity in the hippocampal in vitro preparation. Ann Neurol 1: 463–469
Google Scholar - Schwartzkroin PA, Stafstrom CE (1980) Effects of EGTA on the calcium-activated afterhyperpolarization in hippocampal CA3 pyramidal cells. Science 210: 1125–1126
Google Scholar - Schwindt PC (1973) Membrane-potential trajectories underlying motoneuron rhythmic firing at high rates. J Neurophysiol 36: 434–449
Google Scholar - Spencer WA, Kandel ER (1961) Electrophysiology of hippocampal neurons. IV. Fast prepotentials. J Neurophysiol 24: 272–285
Google Scholar - Stafstrom CE, Schwindt PC, Crill WE (1982) Negative slope conductance due to a persistent subthreshold sodium current in cat neocortical neurons in vitro. Brain Res 236: 221–226
Google Scholar - Stein RB (1967) The frequency of nerve action potentials generated by applied currents. Proc R Soc Lond [Biol] 167: 64–86
Google Scholar - Storm J, Lanthorn T, Andersen P (1982) Slow depolarizing prepotentials regulating low frequency firing during long depolarizing currents in hippocampal pyramidal cells. Neuroscience 7: S 203
Google Scholar - Traub RD, Llinás R (1978) Hippocampal pyramidal cells: Significance of dendritic ionic conductances. J Neurophysiol 42: 476–498
Google Scholar - Vinogradova OS (1975) Functional organization of the limbic system in the process of registration of information: Facts and hypotheses. In: Isaacson RL, Pribram KH (eds) The hippocampus, vol 2. Plenum Press, New York London, pp 3–69
Google Scholar - Wong RKS, Prince DA (1981) Afterpotential generation in hippocampal pyramidal cells. J Neurophysiol 45: 86–97
Google Scholar - Wong RKS, Prince DA, Basbaum AI (1979) Intradendritic recordings from hippocampal neurons. Proc Natl Acad Sci USA 76: 986–990
Google Scholar