An analysis of neutral-alleles and variable-environment diffusion models (original) (raw)
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime Subscribe now
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
References
- Abramowitz, M., Stegun, I. A.: Handbook of mathematical functions. New York: Dover 1965
Google Scholar - Chakraborty, R., Fuerst, P. A., Nei, M.: Statistical studies on protein polymorphism in natural populations II. Gene differentiation between populations. Genetics 88, 367–390 (1978)
Google Scholar - Crow, J. F., Kimura, M.: An introduction to population genetics. New York: Harper and Row 1970
Google Scholar - Dempster, E. R.: Maintenance of genetic heterogenity. Cold Springs Harbor Symp. Quant. Biol. 20, 25–32 (1955)
Google Scholar - Ethier, S. N.: An error estimate for the diffusion approximation in population genetics, Ph.D. Thesis. Madison: University of Wisconsin 1975
Google Scholar - Ewens, W. J.: Mathematical population genetics. New York: Springer-Verlag 1979
Google Scholar - Feller, W.: An introduction to probability and its applications, Vol. 2. New York: John Wiley 1966
Google Scholar - Feller, W.: Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77, 1–31 (1954)
Google Scholar - Gillespie, J. H.: Sampling theory for alleles in a random environment. Nature 266, 443–445 (1977)
Google Scholar - Gillespie, J. H.: A general model to account for enzyme variation in natural populations V. The SAS- CFF model. Theor. Pop. Biol. 14, 1–45 (1978)
Google Scholar - Gillespie, J. H.: Molecular evolution and polymorphism in a random environment. Genetics 93, 737–754 (1979)
Google Scholar - Gillespie, J. H., Langley, C.: A general model to account for enzyme variation in natural populations. Genetics 76, 837–848 (1974)
Google Scholar - Griffiths, R. C.: A transition density expansion for a multi-allelic diffusion model. Adv. Appl. Prob. 11, 310–325 (1979)
Google Scholar - Guess, H. A., Gillespie, J. H.: Diffusion approximations to linear stochastic difference equations with stationary coefficients. J. Appl. Prob. 14, 58–74 (1977)
Google Scholar - Kimura, M.: Process leading to quasi-fixation of genes in natural populations due to random fluctuations of selection intensities. Genetics 39, 280–295 (1954)
Google Scholar - Kimura, M., Ohta, T.: Protein polymorphism as a phase of molecular evolution. Nature 229, 467–469 (1971)
Google Scholar - Levikson, B., Karlin, S.: Random temporial variation in selection intensities acting on infinite diploid populations: Diffusion method analysis. Theor. Pop. Biol. 8, 292–300 (1975)
Google Scholar - Ludwig, D.: Stochastic population theories. New York: Springer-Verlag 1974
Google Scholar - Ludwig, D.: Persistence of dynamical systems under random perturbations. SIAM Rev. 17, 605–640 (1975)
Google Scholar - O'Malley, Jr., R. E.: Introduction to singular perturbations. New York: Academic Press 1974
Google Scholar - Perlow, J.: A transition density for multiple neutral alleles. Theor. Pop. Biol. 16, 223–232 (1979)
Google Scholar - Takahata, N., Kimura, M.: Genetic variability maintained in a finite population under mutation and autocorrelated random fluctuation of selection intensity. Proc. Natl. Acad. Sci. USA. 76, 5813–5817 (1979)
Google Scholar - Tier, C.: A tri-allelic diffusion model with selection, migration, and mutation. Math. Biosci. 44, 41–60 (1979)
Google Scholar - Tier, C., Keller, J. B.: A tri-allelic diffusion model with selection. SIAM J. Appl. Math. 35, 521–535 (1978)
Google Scholar - Voronka, R.: Population genetics: Asymptotic analysis of diffusion equations. Ph.D. Thesis. New York: New York University 1974
Google Scholar - Voronka, R., Keller, J. B.: Asymptotic analysis of stochastic models in population genetics. Math. Biosci. 25, 331–362 (1975)
Google Scholar