Differential expression of the partially duplicated chloroplast S10 ribosomal protein operon (original) (raw)
References
Aldrich J, Cherney BW, Williams C, Merlin E (1988) Sequence analysis of the junction of the large single copy region and the large inverted repeat in the petunia chloroplast genome. Curr Genet 14:487–492 Google Scholar
Barkan A (1988) Proteins encoded by a complex chloroplast transcription unit are each translated from-both monocistronic and polycistronic mRNAs. EMBO J 7:2637–2644 Google Scholar
Bisanz-Seyer C, Li Y-F, Seyer P, Mache R (1989) The components of the plastid ribosome are not accumulated synchronously during the early development of spinach plants. Plant Mol Biol 12:201–211 Google Scholar
Bradley D, Gatenby AA (1985) Mutational analysis of the maize chloroplast ATPase-β subunit gene promoter: the isolation of promoter mutants in E. coli and their characterization in a chloroplast in vitro transcription system. EMBO J 4:3641–3648 Google Scholar
Chen L-J, Rogers SA, Bennett DC, Hu M-C, Orozco EMJ (1990) An in vitro transcription termination system to analyze chloroplast promoters: identification of multiple promoters for the spinach atpB gene. Curr Genet 17:55–64 Google Scholar
Christopher DA, Hallick RB (1990) Complex RNA maturation pathway for a chloroplast ribosomal protein operon with an internal tRNA cistron. Plant Cell 2:659–671 Google Scholar
Christopher DA, Cushman JC, Price CA, Hallick RB (1988) Organization of ribosomal protein genes rpl23, rpl12, rpl22 and rps3 on the Euglena gracilis chloroplast genome. Curr Genet 14:275–286 Google Scholar
Crouse EJ, Schmitt JM, Bohnert HJ, Gordon K, Driesel AJ, Herrmann RG (1978) Intramolecular compositional heterogeneity of Spinacia and Euglena chloroplast DNAs. In: Akoyunoglou G, Argyroudi-Akoyunoglou JH (eds) Chloroplast Development. Elsevier-North Holland, Amsterdam, pp 565–572 Google Scholar
Deng X-W, Gruissem W (1987) Control of plastid gene expression during development: The limited role of transcriptional regulation. Cell 49:379–387 Google Scholar
Deng X-W, Gruissem W (1988) Constitutive transcription and regulation of gene expression in non-photosynthetic plastids of higher plants. EMBO J 7:3301–3308 Google Scholar
Deng X-W, Stern DB, Tonkyn JC, Gruissem WG (1987) Plastid run-on transcription. Application to determine the transcriptional regulation of spinach plastid genes. J Biol Chem 262:9641–9648 Google Scholar
Eisermann A, Tiller K, Link G (1990) In vitro transcription and DNA binding characteristics of chloroplast and etioplast extracts from mustard (Sinapis alba) indicate differential usage of the psbA promoter. EMBO J 9:3981–3987 Google Scholar
Francis MA, Dudock BS (1982) Nucleotide sequence of a spinach chloroplast isoleucine tRNA. J Biol Chem 257:11195–11198 Google Scholar
Galli G, Hofstetter H, Birnstiel ML (1981) Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements. Nature 294:626–631 Google Scholar
Gantt JS (1988) Nucleotide sequences of cDNAs encoding four complete nuclear-encoded plastid ribosomal proteins. Curr Genet 14:519–528 Google Scholar
Greenberg BM, Gruissem W, Hallick RB (1984) Accurate processing and pseudouridylation of chloroplast transfer RNA in a chloroplast transcription system. Plant Mol Biol 3:97–109 Google Scholar
Gruissem W (1989) Chloroplast RNA: transcription and processing. In: Marcus A (ed) The biochemistry of plants. Academic Press, San Diego, pp 151–191 Google Scholar
Gruissem W, Zurawski G (1985a) Analysis of promoter regions for the spinach chloroplast rbcL, atpB and psbA genes. EMBO J 4:3375–3383 Google Scholar
Gruissem W, Zurawski G (1985b) Identification and mutational analysis of the promoter for a spinach chloroplast transfer RNA gene. EMBO J 4:1637–1644 Google Scholar
Gruissem W, Zurawski G (1985c) Promoter structure and expression of chloroplast genes. In: van Vloten-Doting L, Groot GSP, Hall TC (eds) Molecular form and function of the plant genome. Plenum Publishing, New York, pp 199–210 Google Scholar
Gruissem W, Greenberg BM, Zurawski G, Prescott DM, Hallick RB (1983) Biosynthesis of chloroplast transfer RNA in a spinach chloroplast transcription system. Cell 35:815–828 Google Scholar
Gruissem W, Elsner-Menzel C, Latshaw S, Narita JO, Schaffer MA, Zurawski G (1986a) A subpopulation of spinach chloroplast tRNA genes does not require upstream promoter elements for transcription. Nucleic Acids Res 14:7541–7556 Google Scholar
Gruissem W, Greenberg BM, Zurawski G, Hallick RB (1986b) Chloroplast gene expression and promoter identification in chloroplast extracts. Methods Enzymol. 118:253–270 Google Scholar
Haley J, Bogorad L (1990) Alternative promoters are used for genes within maize chloroplast polycistronic transcription units. Plant Cell 2:323–333 Google Scholar
Hanley-Bowdoin L, Orozco EM, Chua N-H (1985) In vitro synthesis and processing of a maize chloroplast transcript encoded by the ribulose 1,5-bisphosphate carboxylase large subunit gene. Mol Cell Biol 5:2733–2745 Google Scholar
Hiratsuka J, Shimada H, Whittier R, Ishibaxhi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C, Meng B, Li Y, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) choroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217:185–194 Google Scholar
Kashdan MA, Dudock BS (1982) The gene for a spinach chloroplast isoleucine tRNA has a methionine anticodon. J Biol Chem 257:11191–11194 Google Scholar
Kung SD, Lin CM (1985) Chloroplast promoters from higher plants. Nucleic Acids Res 13:7543–7549 Google Scholar
Lam E, Chua N-H (1987) Chloroplast DNA gyrase and in vitro regulation of transcription by template topology and novobiocin. Plant Mol Biol 8:415–424 Google Scholar
Link G (1984) DNA sequence requirements for the accurate transcription of a protein-coding plastid gene in a plastid in vitro system from mustard (Sinapis alba L.). EMBO J 3:1697–1704 Google Scholar
Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci USA 84:7024–7027 Google Scholar
Liu X-Q, Hosler JP, Boynton JE, Gillham NW (1989) mRNAs for two ribosomal proteins are preferentially translated in the chloroplast of Chlamydomonas reinhardtii under conditions of reduced protein synthesis. Plant Mol Biol 12:385–394 Google Scholar
Mache R, Briat J-F, Dorne A-M, Guitton C, Lescure A-M, Rozier C (1985) Biogenesis of spinach chloroplast ribosomes. In: van Vloten-Doting L, Groot GSP, Hall TC (eds) Molecular form and function of the plant genome. Plenum Press, New York, pp 257–266 Google Scholar
McLaughlin WE, Larrinua IM (1987) The sequence of the maize rps19 locus and of the inverted repeat/unique region junctions. Nucleic Acids Res 15:3932 Google Scholar
Michalowski CB, Pfanzagl B, Löffelhardt W, Bohnert HJ (1990) The cyanelle S10 spc ribosomal protein gene operon from Cyanophora paradoxa. Mol Gen Genet 224:222–231 Google Scholar
Moon W, Wu R (1988) Organization and nucleotide sequence of genes at both junctions between the two inverted repeats and the large single-copy region in the rice chloroplast genome. Gene 70:1–12 Google Scholar
Mullet JE (1988) Chloroplast development and gene expression. Annu Rev Plant Physiol Plant Mol Biol 39:475–502 Google Scholar
Mullet JE, Klein RR (1987) Transcription and RNA stability are important determinants of higher plant chloroplast RNA levels. EMBO J 6:1571–1579 Google Scholar
Neff NF, Chamberlin MJ (1980) Termination of transcription by Escherichia coli ribonucleic acid polymerase in vitro. Effect of altered reaction conditions and mutations in the enzyme protein on termination with T7 and T3 deoxyribonucleic; acids. Biochemistry 19:3005–3015 Google Scholar
Nickelsen J, Link G (1990) Nucleotide sequence of the mustard chloroplast genes trnH and rps19′. Nucleic Acids Res 18:1051 Google Scholar
Nomura M, Gourse R, Baughman G (1984) Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem 53:75–117 Google Scholar
Oeller PW, Min-Wong L, Taylor LP, Pike DA, Theologis A (1991) Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254:437–439 Google Scholar
Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574 Google Scholar
Ohyama K, Fukuzawa H, Kohchi T, Sano T, Sano S, Shirai H, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1988) Structure and organization of Marchantia polymorpha chloroplast genome I. Cloning and gene identification. J Mol Biol 203:281–298 Google Scholar
Posno M, Van Noort M, Debise R, Groot GSP (1984) Isolation, characterization, phosphorylation and site of synthesis of Spinacia chloroplast ribosomal proteins. Curr Genet 8:147–154 Google Scholar
Posno M, Verweij WR, Dekker IC, De Waard PM, Groot GSP (1986) The genes encoding chloroplast ribosomal proteins S7 and S12 are located in the inverted repeat of Spirodela oligorhiza chloroplast DNA. Curr Genet 11:25–34 Google Scholar
Pruss GJ, Drlica K (1989) DNA supercoiling and prokaryotic transcription. Cell 56:521–523 Google Scholar
Russell D, Bogorad L (1987) Transcription analysis of the maize chloroplast gene for the ribosomal protein S4. Nucleic Acids Res 15:1853–1867 Google Scholar
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York Google Scholar
Schmidt RJ, Richardson CB, Gillham NW, Boynton JE (1983) Sites of synthesis of chloroplast ribosomal proteins in Chlamydomonas. J Cell Biol 96:1451–1463 Google Scholar
Sexton TB, Christopher DA, Mullet JE (1990) Light-induced switch in barley psbD-psbC promoter utilization: a novel mechanism regulating chloroplast gene expression. EMBO J 9:4485–4494 Google Scholar
Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049 Google Scholar
Sijben-Müller G, Hallick RB, Alt J, Westhoff P, Herrmann RG (1986) Spinach plastid genes coding for initiation factor IF-1, ribosomal protein S11 and RNA polymerase α-subunit. Nucleic Acids Res 14:1029–1044 Google Scholar
Simons RW, Kleckner N (1988) Biological regulation by antisense RNA in prokaryotes. Annu Rev Genet 22:567–600 Google Scholar
Spielmann A, Stutz E (1983) Nucleotide sequence of soybean chloroplast DNA regions which contain the psbA and trnH genes and cover the ends of the large single copy region and one end of the inverted repeats. Nucleic Acids Res 11:7157–7167 Google Scholar
Spielmann A, Roux E, von Allmen J-M, Stutz E (1988) The soybean chloroplast genome: complete sequence of the rps19 gene, including flanking parts containing exon 2 of rpl2 (upstream), but lacking rpl22 (downstream). Nucleic Acids Res 16:1199 Google Scholar
Stern DB, Gruissem W (1987) Control of plastid gene expression: 3′ inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription. Cell 51:1145–1157 Google Scholar
Stirdivant SM, Crossland LD, Bogorad L (1985) DNA supercoiling affects in vitro transcription of two maize chloroplast genes differently. Proc Natl Acad Sci USA 82:4886–4890 Google Scholar
Sugita M, Kato A, Shimada H, Sugiura M (1984) Sequence analysis of the junctions between a large inverted repeat and single-copy regions in the tobacco chloroplast DNA. Mol Gen Genet 194:200–205 Google Scholar
Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19:149–168 Google Scholar
Sun E, Wu B, Tewari KK (1989) In vitro analysis of the pea choroplast 16S rRNA gene promoter. Mol Cell Biol 9:5650–5659 Google Scholar
Tanaka M, Wakasugi T, Sugita M, Shinozaki K, Sugiura M (1986) Genes for the eight ribosomal proteins are clustered on the chloroplast genome of tobacco (Nicotiana tabacum): Similarity to the S10 and spc operons of Escherichia coli. Proc Natl Acad Sci USA 83:6030–6034 Google Scholar
Thomas F, Nassenet O, Dome A, Briat J, Mache R (1988a) Expression of the rpl23, rpl2 and rps19 genes in spinach chloroplasts. Nucleic Acids Res 16:2461–2472 Google Scholar
Thomas F, Zeng G, Mache R, Briat J-F (1988b) Transcription study of the genes encoded in the region of the junction between the large single copy and the inverted repeat A of spinach chloroplast DNA. Plant Mol Biol 10:447–457 Google Scholar
Thompson RJ, Mosig G (1987) Stimulation of a Chlamydomonas chloroplast promoter by novobiocin in situ and in E. coli implies regulation by torsional stress in the chloroplast DNA. Cell 48:281–287 Google Scholar
Ward DF, Murray NE (1979) Convergent transcription in bacteriophage λ: Interference with gene expression. J Mol Biol 133:249–266 Google Scholar
Wu H-Y, Shyy S, Wang JC, Liu LF (1988) Transcription generates positively and negatively supercoiled domains in the template. Cell 53:433–440 Google Scholar
Yao WB, Meng BY, Tanaka M, Sugiura M (1989) An additional promoter within the protein-coding region of the psbD psbC gene cluster in tobacco chloroplast DNA. Nucleic Acids Res 17:9583–9591 Google Scholar
Yokoi F, Tanaka M, Wakasugi T, Sugiura M (1991) The chloroplast gene for ribosomal protein CL23 is functional in tobacco. FEBS Lett 281:64–66 Google Scholar
Zhou D-X, Quigley F, Massenet O, Mache R (1989) Cotranscription of the S10- and spc-like operons in spinach chloroplasts and identification of three of their gene products. Mol Gen Genet 216:439–445 Google Scholar
Zurawski G, Bottomley W, Whitfeld PR (1984) Junctions of the large single copy regions and the inverted repeats in Spinacia oleracea and Nicotiana debneyi chloroplast DNA: sequence of the genes for tRNA His and the ribosomal proteins S19 and L2. Nucleic Acids Res 12:6547–6558 Google Scholar