Mapping of monoamine neurones and fibres in the cat lower brainstem and spinal cord (original) (raw)
Summary
The localization of monoaminergic neurones in the medulla oblongata and the pons, and the distribution of catecholaminergic fibres in the spinal cord of the cat were investigated by means of formaldehyde-induced (FIF) or glyoxylic-acid-induced (GIF) fluorescence. Four groups of catecholamine (CA)-containing neurones were found in the following regions: (1) in the ventrolateral medulla oblongata within and adjacent to the lateral reticular nucleus, beginning slightly rostral to the medullo-spinal junction and extending rostrally to the cranial third of the inferior olive; (2) in the commissural, medial and lateral nucleus of the solitary tract; (3) cranial to the first group, closely adjacent to the facial nucleus and the superior olive; and (4) in the dorsolateral pons distributed to different nuclei, namely the nucleus coeruleus and subcoeruleus, the Koelliker-Fuse nucleus, and the medial and lateral parabrachial nuclei. The indoleamine (IA)-containing cell bodies were in general confined to the raphe nuclei, namely the nucleus raphe pallidus, nucleus raphe obscurus, nucleus raphe magnus, nucleus raphe pontis, nucleus raphe dorsalis and the central superior nucleus. A few IA-neurones were located more laterally, especially dorsal and lateral of the cranial half of the inferior olive, around the root of the hypoglossal nerve, in the lateral tegmental field and the pontine central gray. In the spinal cord most CA-fibres were found in the intermediolateral cell column. Another dense accumulation of CA-fibres was located dorsally and laterally of the central canal. The ventral and dorsal horns also contained CA-nervefibres which were slightly more numerous in the sacral spinal cord than in the more rostral parts of the spinal cord.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime Subscribe now
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
References
- Battista A, Fuxe K, Goldstein M, Ogawa M (1972) Mapping of central monoamine neurons in the monkey. Experientia 28:688–690
Google Scholar - Berman AI (1968) The brain stem of the cat. A cytoarchitectonic atlas with stereotaxic coordinates. Univ Wisconsin Press, Madison
Google Scholar - Blessing WW, Chalmers JP, Howe PRC (1978), Distribution of catecholamine-containing cell bodies in the rabbit central nervous system. J Comp Neurol 179:407–424
Google Scholar - Bloom FE, Battenberg ELF (1976) A rapid, simple and sensitive method for the demonstration of central catecholamine-containing neurons and axons by glyoxylic acid-induced fluorescence. A detailed description of methodology. J Histochem Cytochem 24:561–571
Google Scholar - Carlsson A, Falck B, Fuxe K, Hillarp N-A (1964) Cellular localization of monoamines in the spinal cord. Acta Physiol Scand 60:112–119
Google Scholar - Chiba, T, Doba N (1976) Catecholaminergic axo-axonic synapses in the nucleus of the tractus solitarius (pars commissuralis) of the cat: possible relation to presynaptic regulation of baroreceptor reflexes. Brain Res 102:255–265
Google Scholar - Chouchkov Ch N (1974) Zur Lokalisation von biogenen Aminen im Rückenmark der Ratte. Eine fluoreszenzhistochemische Untersuchung nach L-Dopa-Gabe. Histochemie 41:167–173
Google Scholar - Chu N, Bloom FE (1974) The catecholamine-containing neurons in the cat dorsolateral pontine tegmentum: distribution of the cell bodies and some axonal projections. Brain Res 66:1–21
Google Scholar - Coote JH, Macleod VH (1974) The influence of bulbospinal monoaminergic pathways on sympathetic nerve activity. J Physiol 241:453–475
Google Scholar - Crutcher KA, Bingham WG jr (1978) Descending monoaminergic pathways in the primate spinal cord. Am J Anat. 153:159–164
Google Scholar - Crutcher KA, Humbertson AO jr (1978) The organization of monoamine neurons within the brainstem of the north american opossum (didelphis virginiana). J Comp Neurol 179:195–222
Google Scholar - Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine containing neurons in the CNS. I. Demonstration of monoamines in the cell-bodies of brainstem-neurones. Acta Physiol Scand 62:suppl. 232:1–55
Google Scholar - Dahlström A, Fuxe K (1965) Evidence for the existence of monoamine containing neurons in the CNS. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol Scand 64: suppl. 247:1–36
Google Scholar - Di Carlo V, Hubbard JE, Pate P (1973) Fluorescence histochemistry of monoamine-containing cell bodies in the brain stem of the squirrel monkey (saimiri sciureus). IV. An atlas. J Comp Neurol 152:347–372
Google Scholar - Falck B, Hillarp N-A, Thieme G, Torp H (1962) Fluorescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354
Google Scholar - Felten DL, Laties AM Carpenter MB (1974) Monoamine-containing cell bodies in the squirrel monkey brain. Am J Anat 139:153–166
Google Scholar - Fuxe K (1965) Evidence for the existence of monoamine containing neurons in the CNS. IV. The distribution of monoamine terminals in the central nervous system. Acta Physiol Scand 64:suppl. 247:39–85
Google Scholar - Galabov P (1978) The vegetative network in the guinea pig and rat sacral spinal cords. Histochemie 56:173–176
Google Scholar - Galabov P, Davidoff M (1976) On the vegetative network of the guinea pig thoracic spinal cord. Histochemie 47:247–256
Google Scholar - Garver DL, Sladek JR jr (1975) Monoamine distribution in primate brain. I. Catecholaminecontaining perikarya in the brain stem of macaca speciosa. J Comp Neurol 159:289–304
Google Scholar - Hubbard JE, Di Carlo V (1973) Fluorescence histochemistry of monoamine-containing cell bodies in the brain stem of the squirrel monkey (saimiri sciureus). I. The locus caeruleus. J Comp Neurol 147:553–566
Google Scholar - Hubbard JE, Di Carlo V (1974a) Fluorescence histochemistry of monoamine-containing cell bodies in the brain stem of the squirrel monkey (saimiri sciureus). II. Catecholamine containing groups. J Comp Neurol 153:369–384
Google Scholar - Hubbard JE, Di Carlo V (1974b) Fluorescence histochemistry of monoamine-containing cell bodies in the brain stem of the squirrel monkey (saimiri sciureus). III. Serotonin containing groups. J Comp Neurol 153:385–398
Google Scholar - Ishikawa M, Shimada, S, Tanaka C (1975) Histochemical mapping of catecholamine neurons and fiber pathways in the pontine tegmentum of the dog. Brain Res 86:1–16
Google Scholar - Jacobowitz DM, MacLean PD (1978) A brainstem atlas of catecholaminergic neurons and serotonergic perikarya in a pygmy primate (cebuella pygmea). J Comp Neurol 177:397–416
Google Scholar - Jones BE, Moore RY (1974) Catecholamine-containing neurons of the nucleus locus coeruleus in the cat. J Comp Neurol 157:43–51
Google Scholar - Lindvall O, Björklund A (1974) The glyoxylic acid fluoescence histochemical method: a detailed account of the methodology for the visualization of central catecholamine neurons. Histochemie 39:97–127
Google Scholar - Lorén I, Björklund A, Falck B, Lindvall O (1976) An improved histofluorescence procedure for freeze-dried paraffin-embedded tissue based on combined formaldehyde-glyoxylic acid perfusion with high magnesium content and acid pH. Histochemie 49:177–192
Google Scholar - Lorén I, Björklund A, Lindvall O (1977) Magnesium-Ions in catecholamine fluorescence histochemistry. Application to the cryostat and vibratome techniques. Histochemie 52:223–239
Google Scholar - Maeda T, Pin C, Salvert D, Ligier M, Jouvet M (1973) Les neurones contenant des catécholamines du tegmentum pontique et leurs voies de projection chez le chat. Brain Res 57:119–152
Google Scholar - Nobin A, Björklund A (1973) Topography of monoamine neuron systems in the human brain as revealed in fetuses. Acta Physiol Scand 88:suppl. 388:1–40
Google Scholar - Olson L, Boréus OL, Seiger A (1973) Histochemical demonstration and mapping of 5-hydroxytryptamine- and catecholamine-containing neuron systems in the human fetal brain. Z Anat Entwickl Gesch 139:259–282
Google Scholar - Palkovits M, Jacobowitz DM (1974) Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. II. Hindbrain (mesencephalon, rhombencephalon). J Comp Neurol 157:29–42
Google Scholar - Pin C, Jones BE, Jouvet M (1968) Topographie des neurones monoaminergiques du tronc cérébral du chat: étude par histofluorescence. Compt Rend Soc Biol 12:2136–2141
Google Scholar - Poitras D, Parent A (1978) Atlas of the distribution of monoamine-containing nerve cell bodies in the brain stem of the cat. J Comp Neurol 179:699–718
Google Scholar - Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100:297–379
Google Scholar - Swanson LW, Hartman BK (1975) The central adrenergic system. An Immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-β-hydroxylase as a marker. J Comp Neurol 163:467–506
Google Scholar - Taber E (1961) The cytoarchitecture of the brain stem of the cat. I. Brain stem nuclei of cat. J Comp Neurol 116:27–70
Google Scholar - Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand 82:suppl. 367:1–48
Google Scholar
Author information
Authors and Affiliations
- Department of Anatomy, University of Heidelberg, Im Neurenheimer Feld 307, D-6900, Heidelberg, Federal Republic of Germany
Karl J. Lackner - I. Physiologisches Institut, University of Heidelberg, Im Neuenheimer Feld 326, D-6900, Heidelberg, Federal Republic of Germany
Karl J. Lackner
Rights and permissions
About this article
Cite this article
Lackner, K.J. Mapping of monoamine neurones and fibres in the cat lower brainstem and spinal cord.Anat Embryol 161, 169–195 (1980). https://doi.org/10.1007/BF00305343
- Accepted: 05 August 1980
- Issue Date: December 1980
- DOI: https://doi.org/10.1007/BF00305343