Effects of fatigue and altered pH on isometric force and velocity of shortening at zero load in frog muscle fibres (original) (raw)
References
AICKIN, C. C. & THOMAS, R. C. (1977) Micro-electrode measurement of the intracellular pH and buffering power of mouse soleus muscle fibres.J. Physiol.267, 791–810. Google Scholar
ASHLEY, C. C. & MOISESCU, D. G. (1977) Effect of changing the composition of the bathing solutions upon the isometric tension-pCa relationship in bundles of crustacean myofibrils.J. Physiol.270, 627–52. Google Scholar
Ashley, C. C., Franciolini, F., Lea, T. J. & Lignon, J. (1979) Effect of carbon dioxide on calcium transient and tension responses from fibres of the barnacle_Balanus nubilus. J. Physiol., Lond._ 296, 71P. Google Scholar
BENDALL, J. R. (1969)Muscles, Molecules and Movement. London: Heinemann. Google Scholar
BLINKS, J. R., RÜDEL, R. & TAYLOR, S. R. (1978) Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin.J. Physiol.277, 291–323. Google Scholar
BRENNER, B. (1980) Effect of free sarcoplasmic Ca2+ concentration on maximum unloaded shortening velocity: measurements on single glycerinated rabbit psoas muscle fibres.J. Musc. Res. Cell Motil.1, 409–28. Google Scholar
CLEWORTH, D. R. & EDMAN, K. A. P. (1972) Changes in sarcomere length during isometric tension development in frog skeletal muscle.J. Physiol.227, 1–17. Google Scholar
DAWSON, M. J., GADIAN, D. G. & WILKIE, D. R. (1978) Muscular fatigue investigated by phosphorus nuclear magnetic resonance.Nature274, 861–6. Google Scholar
DAWSON, M. J., GADIAN, D. G. & WILKIE, D. R. (1980) Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorus nuclear magnetic resonance.J. Physiol.299, 465–84. Google Scholar
Eberstein, A. & Sandow, A. (1963) Fatigue mechanisms in muscle fibres. In_The Effect of Use and Disuse on Neuromuscular Functions_ (edited by Gutman, E. and Hnik, P.), pp. 515–526. Nakladatelstvi Ceskoslovenské akademie ved Praha.
EDMAN, K. A. P. (1975) Mechanical deactivation induced by active shortening in isolated muscle fibres of the frog.J. Physiol.246, 255–75. Google Scholar
EDMAN, K. A. P. (1979) The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres.J. Physiol.291, 143–59. Google Scholar
EDWARDS, R. H. T., HILL, D. K. & JONES, D. A. (1975) Metabolic changes associated with the slowing of relaxation in fatigued mouse muscle.J. Physiol.251, 287–301. Google Scholar
FABIATO, A. & FABIATO, F. (1978) Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles.J. Physiol.276, 233–55. Google Scholar
FITTS, R. H. & HOLLOSZY, J. O. (1978) Effects of fatigue and recovery on contractile properties of frog muscle.J. appl. Physiol.45, 899–902. Google Scholar
GONZALEZ, N. C., GERBRANDT, M. & BROWN, E. B. (1976) Changes in skeletal muscle cell pH during graded changes in PCO 2.Respir. Physiol.26, 207–12. Google Scholar
GONZALEZ-SERRATOS, H., SOMLYO, A. V., McCLELLAN, G., SHUMAN, H., BORRERO, L. M. & SOMLYO, A. P. (1978) Composition of vacuoles and sarcoplasmic reticulum in fatigued muscle: Electron probe analysis.Proc. natn. Acad. Sci.75, 1329–33. Google Scholar
GRABOWSKI, W., LOBSIGER, E. A. & LÜTTGAU, H. C. (1972) The effect of repetitive stimulation at low frequencies upon the electrical and mechanical activity of single muscle fibers.Pflügers Arch. ges. Physiol.334, 222–39. Google Scholar
HEISLER, N. (1975) Intracellular pH of isolated rat diaphragm muscle with metabolic and respiratory changes of extracellular pH.Respir. Physiol.23, 243–55. Google Scholar
HUXLEY, A. F. (1957) Muscle structure and theories of contraction.Prog. Biophys. biophys. Chem.7, 255–318. Google Scholar
IZUTSU, K. T. (1972) Intracellular pH, H ion flux and H ion permeability coefficient in bullfrog toe muscle.J. Physiol.221, 15–27. Google Scholar
JULIAN, F. J. (1971) The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres.J. Physiol.218, 117–45. Google Scholar
JULIAN, F. J. & MOSS, R. L. (1981) Effects of calcium and ionic strength on shortening velocity and tension development in frog skinned muscle fibres.J. Physiol.311, 179–99. Google Scholar
MATTIAZZI, A. R. & EDMAN, K. A. P. (1979) Efecto de la acidosis hipercápnica sobre la tension tetanica y la velocidad de acortamiento en fibras esqueléticas aisladas.Medicina39, 767 (abstract). Google Scholar
NANNINGA, L. B. (1962) On the inhibition of myosin ATP-ase by ADP.Archs Biochem. Biophys.96, 51. Google Scholar
NASSAR-GENTINA, V., PASSONNEAU, J. V., VERGARA, J. L. & RAPOPORT, S. J. (1978) Metabolic correlates of fatigue and of recovery from fatigue in single frog muscle fibers.J. gen. Physiol.72, 593–606. Google Scholar
PODOLSKY, R. J. & TEICHHOLZ, L. E. (1970) The relation between calcium and contraction kinetics in skinned muscle fibres.J. Physiol.211, 19–35. Google Scholar
PORTZEHL, H., ZAORALEK, P. & GAUDIN, J. (1969) The activation by Ca2+ of the ATPase of extracted muscle fibrils with variation of ionic strength, pH and concentration of Mg ATP.Biochim. Biophys. Acta189, 440–8. Google Scholar
POOLE-WILSON, P. A. & CAMERON, I. R. (1975) Intracellular pH and K+ of cardiac and skeletal muscle in acidosis and alkalosis.Am. J. Physiol.229, 1305–10. Google Scholar
PRINGLE, J. W. S. (1967) The contractile mechanism of insect fibrillar muscle.Progr. Biophys.17, 3–60. Google Scholar
SCHÄDLER, M. (1967) Proportionale Aktivierung von ATPase-aktivität und Kontraktions-spannung durch Calciumionen in isolierten contraktilen Strukturen verschiedener Muskelarten.Pflügers Arch. ges. Physiol.296, 70–90. Google Scholar
SPANDE, J. J. & SCHOTTELIUS, B. A. (1970) Chemical basis of fatigue in isolated mouse soleus muscle.Am. J. Physiol.219, 1490–5. Google Scholar
THAMES, M. D., TEICHHOLZ, L. E. & PODOLSKY, R. J. (1974) Ionic strength and the contraction kinetics of skinned muscle fibres.J. gen. Physiol.63, 509–30. Google Scholar
TRENTHAM, D. R., ECCLESTON, J. F. & BAGSHAW, C. R. (1976) Kinetic analysis of ATPase mechanisms.Q. Rev. Biophys.9, 217–81. Google Scholar