Role of RNA and protein synthesis in memory formation (original) (raw)

References

  1. Katz, J. J., andHalstead, W. C. 1950. Protein organization and mental function. Comp. Psychol. Monogr. 20:1–38.
    Google Scholar
  2. Flexner, J. B., Flexner, L. B., Stellar, E., de la Haba, G., andRoberts, R. B. 1962. Inhibition of protein synthesis in brain and learning and memory following puromycin. J. Neurochem. 9:595–605.
    Google Scholar
  3. Marr, D. A. 1969. A theory of cerebellar cortex. J. Physiol. 202:437–470.
    Google Scholar
  4. Stent, G. A. 1973. A physiological mechanisms for Hebb's postulate of learning. Proc. Natl. Acad. Sci. U.S.A. 70:997–1001.
    Google Scholar
  5. Hebb, D. O. 1949. Organization of Behavior, John Wiley and Sons, New York.
    Google Scholar
  6. Davis, R. E., andAgranoff, B. W. 1966. Stages of memory in goldfish: Evidence for an environmental trigger. Proc. Natl. Acad. Sci. U.S.A. 55:555–559.
    Google Scholar
  7. Flexner, L. B., Flexner, J. B., andRoberts, R. B. 1967. Memory in mice analyzed with antibiotics. Science 155:1377–1383.
    Google Scholar
  8. Zippel H. (ed.) 1973. Memory and Transfer of Information, Plenum Press, New York.
    Google Scholar
  9. Byrne, W. L., Samule, D., Bennett, E. L., Rosenzweig, M. R., Wasserman, E., Wagner, A. R., Gardner, F., Galambos, R., Berger, B. D., Margules, D. L., Ienichel, R. L., Stein, L., Corson, J. A., Enesco, H. E., Chorover, S. L., Holt, C. E., III, Schiller, P. G., Chiappetta, L., Jarvik, M. E., Leaf, R. C., Dutcher, J. D., Horovits, Z. P., andCarlson, P. L. 1966. Memory transfer. Science 153: 655.
    Google Scholar
  10. Goldstein, A., Sheehan, P., andGoldstein, J. 1971. Unsuccessful attempts to transfer morphine tolerance and passive avoidance by brain extracts. Nature 233:126–129.
    Google Scholar
  11. Ungar, G., Desiderio, D. M., andParr, W. 1972. Isolation, identification and synthesis of a specific-behavior inducing brain peptide. Nature 238:198–202.
    Google Scholar
  12. Malin, D. H., andGuttman, H. N. 1972 Synthetic rat scotophobin induces dark avoidance in mice. Science 178:1219–1220.
    Google Scholar
  13. Miller, R. R., Small, D., andBerk, A. M. 1975. Information content of rat scotophobin. Behav. Biol. 15:463–472.
    Google Scholar
  14. De Weid, D., Sarantakis, D., andWeinstein, B. 1973 Behavioral evaluation of peptides related to scotophobin. Neuropharmacology 12:1109–1115.
    Google Scholar
  15. Guttman, H. N., andCooper, R. S. 1975. Oligopeptide control of step-down avoidance. Life Sci., 16:915–924.
    Google Scholar
  16. Tate, D. F., andUngar, G. 1975. Identification of a brain peptide induced by blue avoidance training in goldfish. Neurosci. Abstr. 1:329.
    Google Scholar
  17. Uphouse, L. L., MacInnes, J. W., andSchlesinger, K. 1974. Role of RNA and protein in memory storage: A review. Behav. Genet 4:29–81.
    Google Scholar
  18. Dunn, A. J. 1976, The chemistry of learning and the formation of memory. Pages 347–387,in Gispen, W. H. (ed.), Molecular and Functional Neurobiology, Elsevier, Amsterdam.
    Google Scholar
  19. Horn, G., Rose, S. P. R., andBateson, P. P. G. 1973. Experience and plasticity in the central nervous system. Science 181:506–514.
    Google Scholar
  20. Rose, S. P. R., andHaywood, J. 1977. Experience, learning and brain metabolism. Pages 249–292,in Davison, A. W. (ed.), Biochemical Correlates of Brain Structure and Function, Academic Press, New York.
    Google Scholar
  21. Zemp, J. W., Wilson, J. E., Schlesinger, K., Boggan, W. O., andGlassman, E. 1966. Brain function and macromolecules. I. Incorporation of uridine into RNA of mouse brain during short-tern training experience. Proc. Natl. Acad. Sci. U.S.A. 55:1423–1431.
    Google Scholar
  22. Adair, L. B., Wilson, J. E., andGlassman, E. 1968. Brain function and macromolecules, IV. Uridine incorporation into polysomes of mouse brain during different behavioral experiences. Proc. Natl. Acad. Sci. U.S.A. 61:917–922.
    Google Scholar
  23. Zemp, J. W., Wilson, J. E., andGlassman, E. 1967. Brain function and macromolecules. II. Site of increased labeling of RNA in brains of mice during a short-term training experience. Proc. Natl. Acad. Sci. U.S.A. 58:1120–1125.
    Google Scholar
  24. Kahan, B., Krigman, M. R., Wilson, J. E., andGlassman, E. 1970. Brain function and macromolecules. VI. Autoradiographic analysis of the effect of a brief training experience on the incorporation of uridine into mouse brain. Proc. Natl. Acad. Sci. 65:300–303.
    Google Scholar
  25. Coleman, M. S., Wilson, J. E., andGlassman, E. 1971. Incorporation of uridine into polysomes of mouse brain during extinction. Nature 229:54–55.
    Google Scholar
  26. Rees, H. D., Brogan, L. L., Entingh, D. J., Dunn, A. J., Shinkman, P. G., Damstra-Entingh, T., Wilson, J. E., andGlassman, E. 1974. Effect of sensory stimulation on the uptake and incorporation of radioactive lysine into protein of mouse brain and liver. Brain Res., 68:143–156.
    Google Scholar
  27. Herschkowitz, M., Wilson, J. E., andGlassman, E. 1975. The incorporation of radioactive amino acids into brain subcellular proteins during training. J. Neurochem. 25:687–694.
    Google Scholar
  28. Bowman, R. E., andStrobel, D. E. 1969. Brain RNA metabolism in the rat during learning. J. Comp. Physiol. Psychol. 67:448–456.
    Google Scholar
  29. Uphouse, L. L., MacInnes, J. W., andSchlesinger, K. 1972. Uridine incorporation into polyribosomes of mouse brain. Physiol. Behav. 8:1019–1023.
    Google Scholar
  30. Glassman, E. 1974. Macromolecules and behavior: A commentary. Pages 667–677,in Schmitt, F. O., andWorden, F. G. (eds.) The Neurosciences Third Study Program, MIT Press, Cambridge, Massachusetts.
    Google Scholar
  31. Bondy, S. C., andHarrington, M. E. 1978. Brain blood flow: Alteration by prior exposure to a learned task. Science. 199:318–319.
    Google Scholar
  32. Hambley, J. W., Haywood, J., Rose, S. P. R., andBateson, P. P. G. 1977. Effects of imprinting on lysine uptake and incorporation into protein in chick brain. J. Neurobiol. 8:109–118.
    Google Scholar
  33. Rose, S. P. R. 1977. Are experience and learning regulators of protein synthesis in the cerebral cortex? Pages 307–318,in Roberts, S., Lajtha, A., andGispen., W. H. (eds.), Mechanisms, Regulation and Special Functions of Protein Synthesis in the Brain. Elsevier/North-Holland, Amsterdam.
    Google Scholar
  34. Hydén, H., andEgyhazi, E. 1962. Nuclear RNA changes of nerve cells during a learning experiment in rats. Proc. Natl. Acad. Sci. U.S.A. 48:1366–1373.
    Google Scholar
  35. Hydén, H., andEgyhazi, E. 1964. Changes in RNA content and base composition in cortical neurons of rats in a learning experiment involving transfer of handedness. Proc. Natl. Acad. Sci. U.S.A. 52:1030–1035.
    Google Scholar
  36. Hydén, H., andLange, P. W. 1970. S-100 brain protein: Correlation with behavior. Proc. Natl. Acad. Sci. U.S.A. 67:1959–1966.
    Google Scholar
  37. Haljamae, H. H., andLange, P. W., 1972. Calcium content and conformational changes of S-100 protein in the hippocampus during training. Brain Res. 38:131–142.
    Google Scholar
  38. Uphouse, L. L., MacInnes, J. W., andSchlesinger, K. 1972. Effects of conditioned avoidance training on polyribosomes of mouse brain. Physiol Behav. 8:1013–1018.
    Google Scholar
  39. Zomzely-Neurath, C., Marangos, P., York, C. Heimowitz, N., Perl, W., Zayas, V., andCua, W. 1976. Changes in brain-specific proteins during learning. Trans. Am. Soc. Neurochem. 7:242.
    Google Scholar
  40. Zomzely-Neurath, C., andKeller, A. 1977. The different forms of brain enolase: Isolation, characterization, cell specificity and physiological significance. Pages 279–298,in Roberts, S., Lajtha, A., andGispen, W. H. (eds.) Mechanisms, Regulation and Special Functions of Protein Synthesis in the Brain. Elsevier/North-Holland, Amsterdam.
    Google Scholar
  41. Bateson, P. P. G., Horn, G., andRose, S. P. R. 1975. Imprinting: Correlations between behavior and incorporation of14C-uracil into chick brain. Brain Res. 84:207–220.
    Google Scholar
  42. Peterson, R. P., andErulkar, S. D. 1973. Parameters of stimulation of RNA synthesis and characterization by hybridization in a molluscan neuron. Brain Res. 60:177–190.
    Google Scholar
  43. Lipton, P., andHeimbach, C. J. 1977. The effect of extracellular potassium concentration on protein synthesis in guinea-pig hippocampal slices. J. Neurochem. 28:1347–1354.
    Google Scholar
  44. Dunn, A. 1976. Biochemical correlates of training experiences: A discussion of the evidence. Pages 311–320,in Rosenzweig, M. R., andBennett, E. L. (eds.), Neural Mechanisms of Learning and Memory. MIT Press, Cambridge, Massachusetts.
    Google Scholar
  45. Sokoloff, L. 1977. Relation between physiological function and energy metabolism in the central nervous system. J. Neurochem. 29:13–26.
    Google Scholar
  46. Marangos, D. J., Zomzely-Neurath, C., andYork, C. 1976. Determination and characterization of neuron specific protein (NSP) associated enolase activity. Biochem. Biophys. Res. Commun. 68:1309–1316.
    Google Scholar
  47. Bock, E. 1978. Nervous system specific proteins. J. Neurochem. 30:7–14.
    Google Scholar
  48. Shashoua, V. E. 1977. Brain protein metabolism and the acquisition of new patterns of behavior. Proc. Natl. Acad. Sci. U.S.A. 74:1734–1747.
    Google Scholar
  49. Benowitz, L. I., andShashoua, V. E. 1977. Localization of a brain protein metabolically linked with behavioral plasticity in the goldfish. Brain Res. 136:227–242.
    Google Scholar
  50. Shashoua, V. E. 1978. ECF brain protein changes during the acquisition of new behaviors. Trans. Am. Soc. Neurochem. 9:213.
    Google Scholar
  51. DeWied, D., andGispen, W. H. 1977. Behavioral effects of peptides. Pages 397–448_in_ Gainer, H. (ed.), Peptides in Neurobiology, Plenum Press, New York.
    Google Scholar
  52. Snyder, S. H., andBennett, J. P. 1976. Neurotransmitter receptors in the brain: Biochemical identification. Annu. Rev. Physiol. 38:153–176.
    Google Scholar
  53. Rose, S. P. R., andStewart, M. G. 1978. Transient increase in muscarinic acetylcholine receptor and acetylcholinesterase in visual cortex on first exposure of darkreared rats to light. Nature 271:169–170.
    Google Scholar
  54. Wetzel, W., Ott, T., andMatthies, H. 1976. Is actinomycin D suitable for the investigation of memory processes? Pharmacol Biochem. Behav. 4:515–519.
    Google Scholar
  55. Neale, J. H., Klinger, P. D., andAgranoff, B. W. 1973. Camptothecin blocks memory of conditioned avoidance in the goldfish. Science 179:1243–1246.
    Google Scholar
  56. Thut, P. D., andLindell, T. J. 1974. α-Amanitin inhibition of mouse brain form II ribonucleic acid polymerase and passive avoidance retention. Mol. Pharmacol. 10:146–154.
    Google Scholar
  57. Barraco, R. S., andStettner, L. J. 1976. Antibiotics and memory. Psychol. Bull. 82:242–302.
    Google Scholar
  58. Quartermain, D. 1976. The influence of drugs on learning and memory. Pages 508–518,in Rosenzweig, M. R., andBennett, E. L. (eds.), Neural Mechanisms of Learning and Memory, MIT Press, Cambridge, Massachusetts.
    Google Scholar
  59. Flexner, L. B., Flexner, J. B., andRoberts, R. B. 1966. Stages of memory in mice treated with acetoxycycloheximide before or immediately after learning. Proc. Natl. Acad. Sci. U.S.A. 56:730–735.
    Google Scholar
  60. Quartermain, D., andMcEwen, B. S. 1970. Temporal characteristics of amnesia induced by protein synthesis inhibitor: Determination by shock level. Nature 228:677–678.
    Google Scholar
  61. Geller, A., Robustelli, F., Barondes, S. H., Cohen, H. D., andJarvik, M. E. 1969. Impaired performance by post-trial injections of cycloheximide in a passive avoidance task. Psychopharmacologia 14:371–376.
    Google Scholar
  62. Squire, L. R., andBarondes, S. H. 1973. Memory impairment during prolonged training in mice given inhibitors of protein synthesis. Brain Res. 56:215–225.
    Google Scholar
  63. Quartermain, D., McEwen, B. S., andAzmitia, E. C. 1972. Recovery of memory following amnesia in the rat and mouse. J. Comp. Physiol. Psychol. 79:360–370.
    Google Scholar
  64. Botwinick, C. Y., andQuartermain, D. 1974. Recovery from amnesia induced by pre-test injections of monoamine oxidase inhibitors. Pharmacol. Biochem. Behav. 2:375–379.
    Google Scholar
  65. Flood, J., andJarvik, M. 1976. Drug influences on learning and memory. Pages 483–507,in Rosenzweig, M. R., andBennett, E. L. (eds.), Neural Mechanisms of Learning and Memory, MIT Press, Cambridge, Massachusetts.
    Google Scholar
  66. Davis, H. P., Rosenzweig, M. R., Bennett, E. L., andOrme, A. E. 1978. Recovery of memory as a function of the degree of amnesia due to protein synthesis inhibition. Pharmacol. Biochem. Behav. 6:701–710.
    Google Scholar
  67. McGaugh, J. L. 1966. Time-dependent processes in memory storage.Science 153:1351–1358.
    Google Scholar
  68. Lajtha, A. 1964. Protein metabolism in the nervous system. Int. Rev. Neurobiol. 6:2–98.
    Google Scholar
  69. Barondes, S., andCohen, H. 1967. Delayed and sustained effect of acetoxycycloheximide on memory in mice. Proc. Natl. Acad. Sci. U.S.A. 58:157–164.
    Google Scholar
  70. Squire, L. R., andBarondes, S. H. 1976. Amnesic effect of cycloheximide not due to depletion of a constitutive brain protein with short half-life. Brain Res. 103:183–189.
    Google Scholar
  71. Flexner, L. B., andGoodman, R. H. 1975. Studies on memory: Inhibitors of protein synthesis also inhibit catecholamine synthesis. Proc. Natl. Acad. Sci. U.S.A. 72:4660–4663.
    Google Scholar
  72. Bloom, A. S., Quinton, E. E., andCarr, L. A. 1977. Effects of cycloheximide, diethyldithiocarbamate and D-amphetamine on protein and catecholamine biosynthesis in mouse brain. Neuropharmacology 16:411–418.
    Google Scholar
  73. Spanis, C. W., andSquire, L. R. 1978. Elevation of brain tyrosine by inhibitors of protein synthesis is not responsible for their amnesic effect. Brain Res. 139:384–388.
    Google Scholar
  74. Hoffman, P. L., Rainbow, T. C., Flexner, L. B., andGoodman, R. H. Unpublished results.
  75. Ferguson, J. J. 1968. Metabolic inhibitors and adrenal function. Pages 463–478,in McKerns, K. W. (ed.), Functions of the Adrenal Cortex, Vol. 1, Appleton, New York.
    Google Scholar
  76. Zech, R., andDomagk, G. F. 1976. Inhibition of acetylcholinesterase by anisomycin. Life Sci. 19:157–162.
    Google Scholar
  77. Azmitia, E. C., Jr., andMcEwen, B. S. 1976. Early response of rat brain tryptophan hydroxylase activity to cycloheximide, puromycin and corticosterone. J. Neurochem. 27:773–778.
    Google Scholar
  78. Randt, C. T., Korein, J., andLeridow, L. 1973. Localization of action of two amnesia producing drugs in freely moving mice. Exp. Neurol. 41:628–634.
    Google Scholar
  79. Quartermain, D., andBotwinick, C. Y. 1975. The role of biogenic amines in the reversal of cycloheximide-induced amnesia. J. Comp. Physiol. Psychol. 88:386–401.
    Google Scholar
  80. Rainbow, T. C., Adler, J. E., andFlexner, L. B. 1976. Comparison in mice of the amnesic effects of cycloheximide and 6-hydroxydopamine in a one-trial passive avoidance task. Pharmacol. Biochem. Behav. 4:347–349.
    Google Scholar
  81. Rainbow, T. C., andFlexner, L. B. 1978. Studies on memory: Spontaneous return of memory in 6-hydroxydopamine-treated mice and its relation to cycloheximide-induced transient amnesia. Pharmacol. Biochem. Behav. 8: 1–5.
    Google Scholar
  82. Nakajima, S. 1975. Amnesic effect of cycloheximide in the mouse mediated by adrenocortical hormones. J. Comp. Physiol. Psychol. 88:378–385.
    Google Scholar
  83. Squire, L. R., St. John, S., andDavis, H. P. 1976. Inhibitors of protein synthesis and memory: Dissociation of amnesic effects and effects on adrenal steroidogenesis. Brain Res. 112:200–206.
    Google Scholar
  84. Ogren, S.-O., andFuxe, K. 1974. Learning, brain noradrenaline and the pituitaryadrenal axis. Med. Biol. 52:399–405.
    Google Scholar

Download references