Control of aerobic glycolysis in the brain in vitro (original) (raw)

References

  1. Ames, A., III, Tsukada, Y., andNesbett, F. B. 1967. Intracellular Cl−, Na+, K+, Ca2+, Mg2+ and P in nervous tissue. Response to glutamate and to changes in extracellular calcium. J. Neurochem. 14:145–149.
    PubMed Google Scholar
  2. Baker, P. F. 1972. Transport and metabolism of calcium ions in nerve, Prog. Biophys. Mol. Biol. 24:117–223.
    Google Scholar
  3. Benjamin, A. M., andQuastel, J. H. 1972. Locations of amino acids in brain slices from the rat. Tetrodotoxin-sensitive release of amino acids. Biochem. J. 128:631–646.
    PubMed Google Scholar
  4. Benjamin, A. M., andQuastel, J. H. 1974. Fate ofl-glutamate in the brain. J. Neurochem. 23:457–464.
    PubMed Google Scholar
  5. Benjamin, A. M., andQuastel, J. H. 1975. Metabolism of amino acids and ammonia in rat brain cortex slices in vitro: A possible role of ammonia in brain function. J. Neurochem. 25:197–206.
    PubMed Google Scholar
  6. Benjamin, A. M., andQuastel, J. H. 1977. Effects of acetylcholine on potassium induced changes of water and sodium uptakes in cerebral cortex slices from the rat. Can. J. Physiol. Pharmacol. 55:339–346.
    PubMed Google Scholar
  7. Benjamin, A., Okamoto, K., andQuastel, J. H. 1978. Effects of ammonium ions on spontaneous action potentials and on contents of sodium, potassium, ammonium and chloride ions in brain in vitro. J. Neurochem. 30:131–143.
    PubMed Google Scholar
  8. Benjamin, A. M., andVerjee, Z. H. 1979. Location of aerobic glycolysis in the brain: Effects of neurotropic drugs and of metabolic inhibitors on cerebral metabolic processes. Int. Soc. Neurochem. 7:222.
    Google Scholar
  9. Bourke, R. S., andNelson, K. M. 1972. Further studies on the K+-independent swelling of primate cerebral cortex in vivo. The enzymatic basis of the K+-dependent transport of chloride. J. Neurochem. 19:663–685.
    PubMed Google Scholar
  10. Bucher, T., andPfleiderer, G. 1955. Pyruvate kinase from muscle. Pages 435–440,in Colowick, S. P., andKaplan, N. O. (eds.), Methods in Enzymology, Vol. 1, Academic Press, New York.
    Google Scholar
  11. Chan, S. L., andQuastel, J. H. 1967. Tetrodotoxin: Effects on brain metabolism in vitro. Science 156:1752–1753.
    PubMed Google Scholar
  12. Chappell, J. B., andCrofts, A. R. 1965. Calcium ion accumulation and volume changes of isolated liver mitochondria. Biochem. J. 95:378–392.
    PubMed Google Scholar
  13. Cheng, S.-C., andNakamura, R. 1972. Metabolism related to the tricarboxylic acid cycle in rat brain slices. Observations on CO2 fixation and metabolic compartmentation. Brain Res. 38:355–370.
    PubMed Google Scholar
  14. Clarke, D. D., Nicklas, W. J., andBerl, S. 1970. Tricarboxylic acid cycle metabolism in brain. Effects of fluoroacetate and fluorocitrate. Biochem. J. 120:345–351.
    PubMed Google Scholar
  15. Cox, D. W. G., Osborne, R. H., andWatkins, J. C. 1977. Actions ofl-glutamate and related amino acids on oxygen uptake, lactate production and NADH levels of rat brain in vitro. J. Neurochem. 29:1127–1130.
    PubMed Google Scholar
  16. Cummins, J., andHyden, H. 1962. ATP levels and ATPases in neurons, glia and neuronal membranes of the vestibular nucleus. Biochem. Biophys. Acta 60:271–283.
    PubMed Google Scholar
  17. Glick, N. B., andQuastel, J. H. 1972. Effects of cerebral stimuli on adenine incorporation into nucleotides and RNA in brain slices from the rat. Can. J. Biochem. 50:672–683.
    PubMed Google Scholar
  18. Godfraind, J. M., Kawamura, H., Krnjevic, K., andPumain, R. 1971. Actions of dinitrophenol and some other inhibitors on cortical neurons. J. Physiol. (London) 215:199–222.
    Google Scholar
  19. Lahiri, S., andQuastel, J. H. 1963. Fluoroacetate and the metabolism of ammonia in brain. Biochem. J. 89:157–163.
    PubMed Google Scholar
  20. Lazarewicz, J. W., Zalewska, T., Haljamae, E., andHamberger, A. 1978. Effect of calcium on brain metabolism in vitro. Neurochem. Res. 3:638–698.
    Google Scholar
  21. Lipton, M. A., andBarron, E. S. G. 1946. On the mechanism of the anaerobic synthesis of acetylcholine. J. Biol. Chem. 166:367–380.
    Google Scholar
  22. Lowry, O. H., andPassoneau, J. V. 1966. Kinetic evidence for multiple binding sites on phosphofructokinase. J. Biol. Chem. 241:2268–2279.
    Google Scholar
  23. Martinez-Hernandez, A., Bell, K. P., andNorenberg, M. 1977. Glutamine synthetase: glial localization in brain. Science 195:1356–1358.
    PubMed Google Scholar
  24. McLennan, H. 1976. The autoradiographic localization ofl-[3H]glutamate in rat brain tissue. Brain Res. 115:139–144.
    PubMed Google Scholar
  25. Minchin, M. C. W., andBeart, P. M. 1975. Compartmentation of amino acid metabolism in the rat dorsal root ganglion: A metabolic and autoradiographic study. Brain Res. 83:437–449.
    PubMed Google Scholar
  26. Monocha, S. L., andBourne, G. H. 1968. Histochemical mapping of lactate dehydrogenase and monoamine oxidase in the medulla oblongata and cerebellum of squirrel monkey. J. Neurochem. 15:1033–1040.
    PubMed Google Scholar
  27. Nachmansohn, D., John, H. M., andWaelsh, H. 1943. Effect of glutamic acid on the formation of acetylcholine. J. Biol. Chem. 150:485–486.
    Google Scholar
  28. Newsholme, E. A., Sugden, P. H., andWilliams, T. 1977. Effect of citrate on the activities of 6-phosphofructokinase from nervous and muscle tissues from different animals and its relationship to the regulation of glycolysis. Biochem. J. 166:123–129.
    PubMed Google Scholar
  29. Nicklas, W., Nunez, R., Berl, S., andDuvoisin, R. 1979. Neuronal-glial contributions to transmitter amino acid metabolism. Studies with kainic acid-induced lesions of rat striatum. J. Neurochem. 33:839–844.
    PubMed Google Scholar
  30. Nissen, C., andSchousboe, A. 1979. Activity and isoenzyme pattern of lactate dehydrogenase in astroblasts cultures from brains of newborn mice. J. Neurochem. 6:1787–1792.
    Google Scholar
  31. Okamoto, K., andQuastel, J. H. 1970. Water uptake and energy metabolism in brain slices from the rat. Biochem. J. 120:25–36.
    PubMed Google Scholar
  32. Okamoto, K., andQuastel, J. H. 1970. Tetrodotoxin-sensitive uptake of ions and water by slices of rat brain in vitro. Biochem. J. 120:37–47.
    PubMed Google Scholar
  33. Okamoto, K., andQuastel, J. H. 1972. Uptake and release of glutamate in cerebral cortex slices from the rat. Biochem. J. 128:1117–1124.
    PubMed Google Scholar
  34. Pull, I., McIlwain, H., andRamsay, R. L. 1970. Glutamate, calcium ion-chelating agents and the sodium and potassium ion contents of tissues from brain. Biochem. J. 116:181–187.
    PubMed Google Scholar
  35. Ramaiah, A. 1976. Regulation of glycolysis in skeletal muscle. Life Sci. 19:455–466.
    PubMed Google Scholar
  36. Rolleston, F. S., andNewsholme, E. A. 1967. Control of glycolysis in cerebral cortex slices. Biochem. J. 104:524–533.
    Google Scholar
  37. Roth-Schechter, B. F., Laluet, M., Tholey, G., andMandel, P. 1977. The effect of pentobarbital on the carbohydrate metabolism of glial cells in culture. Biochem. Pharmacol. 26:1307–1313.
    Google Scholar
  38. Schousboe, A., Svenneby, G., andHertz, L. 1977. Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J. Neurochem. 20:999–1005.
    Google Scholar
  39. Shankar, R., andQuastel, J. H. 1972. Effects of tetrodotoxin and anaesthetics on brain metabolism and transport during anoxia. Biochem. J. 126:851–857.
    PubMed Google Scholar
  40. Shankaran, R., andQuastel, J. H. 1972. Effects of anesthetics on sodium uptake into rat brain cortex in vitro. Biochem. Pharmacol. 21:1763–1773.
    PubMed Google Scholar
  41. Takagaki, G. 1968. Control of aerobic glycolysis and pyruvate kinase activity in cerebral cortex slices. J. Neurochem. 15:903–918.
    PubMed Google Scholar
  42. Takagaki, G. 1972. Control of aerobic glycolysis in guinea pig cerebral cortex slices. J. Neurochem. 19:1737–1751.
    PubMed Google Scholar
  43. Takagaki, G. 1976. Properties of the uptake and release of glutamic acid by synaptosomes from rat cerebral cortex. J. Neurochem. 27:1417–1425.
    PubMed Google Scholar
  44. Tucek, S., andCheng, S.-C. 1974. Provenance of the acetyl group of acetylcholine and compartmentation of acetyl CoA and Krebs cycle intermediates in the brain in vivo. J. Neurochem. 22:893–914.
    PubMed Google Scholar
  45. Van Den Berg, C. J., andGarfinkel, D. 1971. A simulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem. J. 123:211–218.
    PubMed Google Scholar
  46. Weiler, C. T., Nystrom, B., andHamberger, A. 1979. Glutaminase and glutamine synthetase activity in synaptosomes, bulk-isolated glia and neurons. Brain Res. 160:539–543.
    PubMed Google Scholar
  47. Wollenberger, A. 1955. Actions of protoveratrine on the metabolism of cerebral cortex. Biochem. J. 61:68–80.
    PubMed Google Scholar
  48. Zadunaisky, J. A., Wald, F., andDeRobertis, E. 1965. Osmotic behavior and glial changes in isolated frog brains. Prog. Brain Res. 15:196–218.
    PubMed Google Scholar

Download references