Pyruvate dehydrogenase complex is inhibited in calcium-loaded cerebrocortical mitochondria (original) (raw)

References

  1. Siesjö, B. K. 1981. Cell damage in the brain: A speculative synthesis. J. Cerb. Blood Flow Metab. 1:155–185.
    Google Scholar
  2. Farber, J. L., Chien, K. R., and Mittnacht Jr. S. 1981. The pathogenesis of irreversible cell injury in ischemia. Am. J. Pathol. 102:271–281.
    PubMed Google Scholar
  3. Raichle, M. E. 1983. The pathophysiology of brain ischemia. Ann. Neurol. 13:2–10.
    PubMed Google Scholar
  4. Cheung, J. Y., Bonventre, J. V., Malis, C. D., and Leaf, A. 1986. Calcium and ischemic injury. N. Eng. J. Med. 314:1670–1676.
    Google Scholar
  5. Dienel, G. A. 1984. Regional accumulation of calcium in postischemic rat brain. J. Neurochem. 43:913–925.
    PubMed Google Scholar
  6. Simon, R. P., Griffiths, T., Evans, M. C., Swan, J. H., and Meldrum, B. S. 1984. Calcium overload in selectively vulnerable neurons of the hippocampus during and after ischemia: A electron-microscopy study in the rat. J. Cereb. Blood Flow Metab. 4:350–361.
    PubMed Google Scholar
  7. Deshpande, J. K., Siesjö, B. K., and Wieloch, T. 1987. Calcium accumulation and neuronal damage in the rat hippocampus following cerebral ischemia. J. Cereb. Blood Flow Metab. 7:89–95.
    PubMed Google Scholar
  8. Griffiths, T., Evans, M. C., and Meldrum, B. S. 1982. Intracellular sites of early calcium accumulation in the rat hippocampus during status epilepticus. Neurosci. Lett. 30:329–334.
    PubMed Google Scholar
  9. Happel, R. D., Smith, K. P., Banik, N. L., Powers, J. M., Hogan, E. L., and Balentine, J. D. 1981. Ca2+-accumulation in experimental spinal cord trauma. Brain Res 211:476–479.
    PubMed Google Scholar
  10. Garcia, H., Mitchem, H. L., Briggs, L., Morawetz, R., Hudetz, A. G., Hazelrig, J. B., Halsey Jr. J. H., and Conger, K. A. 1983. Transient focal ischemia in subhuman primates. Neuronal injury as a function of local cerebral blood flow. J. Neuropath. Exp. Neurol. 42:44–60.
    PubMed Google Scholar
  11. Åkerman, K. O., and Nicholls, D. G. 1983. Physiological and bioenergetic aspects of mitochondrial calcium transport. Rev. Physiol. Biochem Pharmacol. 35:149–201.
    Google Scholar
  12. Carafoli, E. 1987. Intracellular calcium homeostasis. Ann. Rev. Biochem. 56:395–433.
    Google Scholar
  13. Blaustein, M. P., Ratzlaff, R. W., Kendrick, N. C., and Schweitzer, E. S. 1978. Calcium buffering in presynaptic nerve terminals. I. Evidence for involvement of a nonmitochondrial ATP-dependent sequestration mechanism. J. Gen. Physiol. 72:15–41.
    PubMed Google Scholar
  14. Nicholls, D. G., and Scott, I. D. 1980. The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimation between kinetic and membrane-potential-dependent calcium-ion efflux mechanisms. Biochem. J. 186:833–839.
    PubMed Google Scholar
  15. Greenwalt, J. W., Rossi, C. S., and Lehninger, A. L. 1964. Effect of active accumulation of calcium and phosphate ions on the structure of rat liver mitochondria. J. Cell Biol. 23:21–38.
    PubMed Google Scholar
  16. Lehninger, A. L. 1970. Mitochondria and calcium ion transport. Biochem. J. 119:129–138.
    PubMed Google Scholar
  17. Hillered, L., Siesjö, B. K., and Arfors, K-E. 1984. Mitochondrial response to transient forebrain ischemia and recirculation in the rat. J. Cereb. Blood Flow Metab 4:438–446.
    PubMed Google Scholar
  18. Sims, N. R., Finegan, J. M., and Blass, J. P. 1986. Effect of postdecapitative ischemia, on mitochondrial respiration in brain tissue homogenates. J. Neurochem. 47:506–511.
    PubMed Google Scholar
  19. Wieloch, T., and Koide, T. 1987. Pyruvate dehydrogenase is inhibited in the recirculation period following transient cerebral ischemia. J. Cereb. Blood Flow Metab. 7 (Suppl. 1): S75.
    Google Scholar
  20. Welsh, F. A., Katayama, Y., and McKee, A. E. 1988. Effect of dichloroacetate on metabolite recovery following ischemia. Trans. Am. Soc. Neurochem. 19:149.
    Google Scholar
  21. Randle, P. J. 1981. Phosphorylation-dephosphorylation cycles and the regulation of fuel selection in mammals. Pages 107–129,in Eastabrook, R. W., and Srere, P. (eds.), Current Topics of Cellular Regulations, Vol. 18, Academic Press, New York.
    Google Scholar
  22. Wieland, O. H. 1983. The mammalian pyruvate dehydrogenase complex: Structures and regulation. Rev. Physiol. Biochem. Pharmacol. 96:127–170.
    Google Scholar
  23. Marshall, S. E., McCormack, J. G., and Denton, R. M. 1984. Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat epididymal adipose tissue. Evidence against a role for Ca2+ in the activation of pyruvate dehydrogenase by insulin. Biochem. J. 218:249–260.
    PubMed Google Scholar
  24. McCormack, J. G. 1985. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria. Biochem. J. 231:581–595.
    PubMed Google Scholar
  25. Bernard, P. A., and Cockrell, R. S. 1984. Calcium transport by rat brain mitochondria and oxidation of 2-oxoglutarate. Biochim. Biophys. Acta 766:549–553.
    PubMed Google Scholar
  26. Lai, J. C. K., and Cooper, A. J. L. 1986. Brain α-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J. Neurochem. 47:1376–1386.
    PubMed Google Scholar
  27. Sheu, K.-F. R., Lai, J. C. K., DiLorenzo, J. C., and Blass, J. P. 1985. Calcium inactivates pyruvate dehydrogenase complex in brain mitochondria. Trans. Am. Soc. Neurochem. 16:193.
    Google Scholar
  28. Lai, J. C. K., and Clark, J. B. 1979. Preparation of synaptic and nonsynaptic mitochondria from mammalian brain. Methods Enzymol. 55(F):51–60.
    PubMed Google Scholar
  29. Lai, J. C. K., and Sheu, K.-F. R. 1985. Relationship between activation state of pyruvate dehydrogenase complex and rate of pyruvate oxidation in isolated cerebro-cortical mitochondria: The effects of potassium ions and adenine nucleotides. J. Neurochem. 45:1861–1868.
    PubMed Google Scholar
  30. Sheu, K.-F. R. and Kim, Y. T. 1984. Studies on the bovine brain pyruvate dehydrogenase complex using the antibodies against kidney enzyme complex. J. Neurochem. 43:1352–1358.
    PubMed Google Scholar
  31. Machicao, F., and Wieland, O. H. 1980. Subunit structure of dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex from bovine kidney. Hoppe-Seyler's Z. Physiol. Chem. 361:1093–1106.
    PubMed Google Scholar
  32. Lai, J. C. K., and Sheu, K.-F. R. 1987. The effect of 2-oxoglutarate or 3-hydroxybutyrate on pyruvate dehydrogenase complex in isolated cerebrocortical mitochondria. Neurochem. Res. 12:715–722.
    PubMed Google Scholar
  33. Sheu, K.-F. R., Lai, J. C. K., and Blass, J. P. 1984. Properties and regional distribution of pyruvate dehydrogenase kinase in rat brain. J. Neurochem. 42:230–236.
    PubMed Google Scholar
  34. Linn, T. C., Pelley, J. W., Pettit, F. H., Hucho, F., Randall, D. D., and Reed, L. J. 1972. α-Keto acid dehydrogenase complexes: XV. Purification and properties of the component enzymes of the pyruvate dehydrogenase complexes from bovine kidney and heart. Arch. Biochem. Biophys. 148:327–342.
    PubMed Google Scholar
  35. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.
    PubMed Google Scholar
  36. Guroff, G. 1964. A neutral, calcium-activated proteinase from the soluble fraction of rat brain. J. Biol. Chem. 239:149–155.
    PubMed Google Scholar
  37. Ikeda, M., Yoshida, S., Busto, R., Santiso, M., and Ginsberg, M. D. 1986. Polyphosphoinositides as a probable source of brain free fatty acids accumulated at the onset of ischemia. J. Neurochem. 47:123–132.
    PubMed Google Scholar

Download references