Effects of cyclic AMP and butyrate on cell cycle, DNA, RNA, and purine synthesis of cultured astrocytes (original) (raw)
References
Pastan, I., Johnson, G. S., and Anderson, W. B. 1975. Role ofcyclic nucleotides in cell growth. Annu. Rev. Biochem. 44:491–522. PubMed Google Scholar
Watson, J. 1976. The involvement of cyclic nucleotide metabolism in the initiation of lymphocyte proliferation induced by mitogens. J. Immunol. 117:1656–1663. PubMed Google Scholar
Boynton, A. L., and Whitfield, J. F. 1983. The role of cyclic AMP in cell proliferation: a critical assessment of the evidence. Adv. Cyclic Nucleotide Res. 15:195–294. Google Scholar
Knudsen, T. E., Larsen, C. S., and Johnson, H. E. 1987. A study of cyclic nucleotides as second messengers after interleukin 2 stimulation of human T lymphocytes. Scand. J. Immunol. 25:527–531. PubMed Google Scholar
Green, H. 1978. Cyclic AMP in relation to proliferation of the epidermal cell: An new view. Cell 15:801–811. PubMed Google Scholar
Vansder-Plas, A., Feyen, J. H., and Nijweide, P. J. 1985. Direct effect of parathyroid hormone on the proliferation of osteoblast-like cells: a possible involvement of cyclic AMP. Biochem. Biophys. Res. Commun. 129:918–925. PubMed Google Scholar
Moonen, G., Cam, Y., Sensenbrenner, M., and Mandel, P. 1975. Variability of the effects of serum-free medium, dibutyryl-cyclic AMP or theophylline on the morphology of cultured newborn rat astroblasts. Cell Tissue Res. 163:365–372. PubMed Google Scholar
Shapiro, D. L. 1973. Morphological and biochemical alterations in foetal rat brain cells cultured in the presence of monobutyryl cyclic AMP. Nature 241:203–204. PubMed Google Scholar
Moonen, G., Heinen, E., and Goessens, G. 1976. Comparative ultrastructural study of the effects of serum-free medium and dibutyryl-cyclic AMP on newborn rat astroblasts. Cell Tissue Res. 167:221–227. PubMed Google Scholar
Lim, R., and Mitsunobu, K. 1972. Effect of dibutyryl cyclic AMP on nucleic acid and protein synthesis in neuronal and glial tumor cells. Life Sci. 11:1063–1070. Google Scholar
Furmanski, R., Silverman, D. J., and Lubin, M. 1971. Expression of differentiated functions in mouse neuroblastoma mediated by dibutyryl-cyclic adenosine monophosphate. Nature 233:413–415. PubMed Google Scholar
MacIntyre, E. H., Wintersgill, C. J., Perkins, and Vatter, A. E. 1972. The responses in culture of human tumor astrocytes and neuroblasts to N6,O2'-dibutyryl adenosine 3′,5′-monophosphoric acid. J. Cell Sci. 11:639–667. PubMed Google Scholar
Posternak, T., Sutherland, E. W., and Henion W. R. 1962. Derivatives of cyclic 3′,5′-adenosine monophosphate. Biochem. Biophys. Acta 65:558–560. PubMed Google Scholar
Wright, J. A. 1973. Morphology and growth rate changes in chinese hamster cells cultured in the presence ofsodium butyrate. Exp. Cell Res. 78:456–460. PubMed Google Scholar
Prasad, K. N., and Sinha, P. K. 1976. Effect of sodium butyrate on mammalian cells in culture: a review. In Vitro 12:125–132. PubMed Google Scholar
Henion, W. F., Sutherland, E. W., and Posternak, T. 1967. Effects of derivatives of adenosine 3′5′-phosphate on liver slices and intact animals. Biochem. Biophys. Acta 148:106–113. PubMed Google Scholar
Heersche, J. N. M., Fedak, S. A., and Aurbach, G. D. 1971. The mode of action of dibutyryl adenosine 3′,5′-monophosphate on bonetissue in vitro. J. Biol. chem. 246:6770–6785. PubMed Google Scholar
Gregorios, J. B., Mozes, L. W., Norenberg, L- O. B., and Norenberg, M. D. 1985. Morphologic effects of ammonia on primary astrocyte cultures. I. Light microscopic studies. J. Neuropathol. Exp. Neurol. 44:397–403. PubMed Google Scholar
Baisch, H., Gohde, W., and Linden, W. A. 1975. Analysis of PCP-data to determine the fraction of cells in the various phases of cell cycle. Radiat. Environ. Biophys. 12:31–9. PubMed Google Scholar
Todaro, G. J. 1969. Transformation assay using cell line 3T3. In: Fundamental techniques in virology. Habel K and Salzman NF, eds. Academic Press, New York pp 220–228. Google Scholar
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram amounts of protein utilizing the principles of protein dye binding. Anal. Biochem. 72:248. PubMed Google Scholar
Lehninger, A. L. 1970. The biosynthesis of mononucleotides. In: Biochemistry. The Molecular Basis of Cell Structure and Function. Worth Publishers, Inc., New York, ch. 25, pp 567–581. Google Scholar
Prasad, K. N., Waymire, J. C., and Weiner, N. 1972. A further study on the morphology and biochemistry of X-ray and dibutyryl cyclic AMP-induced differentiated neuroblastoma cells in culture. Exper. Cell Res. 74:110–114. Google Scholar
Mares, V., Fleischmannova, V., Lodin, A., and Ueberberg, H. 1981. Cyclic AMP and growth regulation in rat glioma cells in tissue culture. Exp. Neurol. 71:154–160. PubMed Google Scholar
Larno, S., Ronot, X., Adelphe, M., and Lechat, P. 1984. Effects of sodium butyrate on growth and cell-cycle kinetics of cultured rabbit articular chondrocytes. J. Cell Physiol. 120:384–390. PubMed Google Scholar
Hagopian, H. K., Riggs, M. G., Swartz, L. A., and Ingram, V. M. 1977. Effect of n-butyrate on DNA synthesis in chick fibroblasts and Hela cells. Cell 12:855–860. PubMed Google Scholar
Chou, J. Y., Robinson, J. C., and Wang, S. S. 1977. Effects of sodium butyrate on synthesis of human chorionic gonadotropin in trophoblastic and nontrophoblastic tumors. Nature 268:543–544. PubMed Google Scholar
Loidl, P., Grobner, P., Csordas, A., and Puschendorf, B. 1982. Cell-cycle-dependent effects of sodium-n-butyrate in_physarum polyphalum_. J. Cell Sci. 58:303–311. PubMed Google Scholar
Kruh, J. 1982. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol. Cell Biochem. 42:65–82. PubMed Google Scholar
D'Anno, J. A., Tobey, R. A., and Gurley, L. R. 1980. Concentration-dependent effects of sodium butyrate in chinese hamster cells: cell-cycle progression, inner histone acetylation, histone H, dephosphorylation and induction of an H1-like protein. Biochemistry 19:2656–2671. PubMed Google Scholar
Prasad, K. N. 1980. Butyric acid: a small fatty acid with diverse biological functions. Life Sci. 27:1351–1358. PubMed Google Scholar