The distribution and phosphorylation of the microtubule-associated protein MAP 1B in growth cones (original) (raw)
References
Aletta, J. M., Lewis, S. A., Cowan, N. J. &Greene, L. A. (1988) Nerve growth factor regulates both the phosphorylation and steady-state levels of microtubule associated protein 1.2 (MAP 1.2).Journal of Cell Biology106, 1573–81. Google Scholar
Asai, D. J., Thompson, W. C., Wilson, L., Dresden, C. F., Schulman, H. &Purich, D. L. (1985). Microtubule associated proteins (MAPs): a monoclonal antibody to MAP 1 decorates microtubules_in vitro_ but stains stress fibres and not microtubules_in vivo_.Proceedings of the National Academy of Science (USA)82, 1434–8. Google Scholar
Baas, P. W., White, L. A. &Heidemann, S. R. (1987) Microtubule polarity reversal accompanies regrowth of amputated neurites.Proceedings of the National Academy of Science (USA)84, 5272–6. Google Scholar
Bamburg, J. R., Bray, D. &Chapman, K. (1986) Assembly of microtubules at the tip of growing axons.Nature321, 788–90. PubMed Google Scholar
Bartlett, W. P. &Banker, G. A. (1984) An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture I. Cells which develop without intercellular contacts.Journal of Neuroscience4, 1944–53. PubMed Google Scholar
Bloom, G. S., Luca, F. C. &Vallee, R. B. (1985a) Identification of high molecular weight microtubule associated proteins in anterior pituitary tissue and cells using taxol dependent purification combined with microtubule associated protein specific antibodies.Biochemistry24, 4185–91. PubMed Google Scholar
Bloom, G. S., Luca, F. C. &Vallee, R. B. (1985b) Microtubule associated protein 1B: identification of a major component of the neuronal cytoskeleton.Proceedings of the National Academy of Science (USA)82, 5404–8. Google Scholar
Bloom, G. S., Schoenfield, T. A. &Vallee, R. B. (1984) Widespread distribution of the major polypeptide component of MAP 1 (Microtubule associated protein 1) in the nervous system.Journal of Cell Biology98, 320–30. PubMed Google Scholar
Bradford, M. M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding.Analytical Biochemistry72, 248–54. PubMed Google Scholar
Brugg, B. &Matus, A. (1988) PC12 cells express juvenile microtubule-associated proteins during nerve factorinduced neurite outgrowth.Journal of Cell Biology107, 643–50. Google Scholar
Calvert, R. &Anderton, B. H. (1985) A microtubule associated protein MAP 1 which is expressed at elevated levels during development of rat cerebellum.EMBO Journal4, 1171–6. PubMed Google Scholar
Daniels, M. (1972) Colchicine inhibition of nerve fiber formation_in vitro_.Journal of Cell Biology53, 164–76. Google Scholar
Diaz-Nido, J., Armas-Potela, R., Martinez, A., Rocha, M. &Avila, J. (1991) Role of microtubules in neurite outgrowth. In_The Nerve Growth Cone_ (edited byKater, S. B., Letourneau, P. C. &Macagno, E. R.) New York: Raven Press, in press. Google Scholar
Diaz-Nido, J. &Avila, J. (1989) Characterization of proteins immunologically related to brain microtubule associated protein MAP 1B in non-neuronal cells.Journal of Cell Science92, 607–20. PubMed Google Scholar
Diaz-Nido, J., Serrano, L., Hernandez, M. A. &Avila, J. (1990) Phosphorylation of microtubule proteins in rat brain at different developmental stages: comparison with that found in neural cultures.Journal of Neurochemistry54, 211–22. PubMed Google Scholar
Diaz-Nido, J., Serrano, L., Mendez, E. &Avila, J. (1988) A casein kinase II-related activity is involved in phosphorylation of microtubule associated protein MAP 1B during neuroblastoma cell differentiation.Journal of Cell Biology106, 2057–65. Google Scholar
Dodd, J. &Jessell, T. M. (1988) Axonal guidance and the patterning of neuronal projections in vertebrates.Science242, 692–9. PubMed Google Scholar
Drubin, D. G., Feinstein, S., Shooter, E. &Kirschner, M. (1985) Nerve growth factor induced outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly promoting factors.Journal of Cell Biology101, 1799–1807. Google Scholar
Fairbanks, G., Steck, N. C. &Wallach, D. F. (1981) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane.Biochemistry10, 2606–17. Google Scholar
Fischer, I. &Romano-Clarke, G. (1990). Changes in microtubule-associated protein MAP 1B phosphorylation during rat brain development.Journal of Neurochemistry55, 328–33. PubMed Google Scholar
Fried, R. C. &Blaustein, M. P. (1978) Retrieval and recycling of synaptic vesicle membrane in pinched-off nerve terminals (synaptosomes).Journal of Cell Biology78, 685–700. PubMed Google Scholar
Gard, D. L. &Kirschner, M. W. (1985) A polymerdependent increase in phosphorylation of β-tubulin accompanies differentiation of a neuroblastoma cell line.Journal of Cell Biology100, 764–74. PubMed Google Scholar
Garner, C. C., Garner, A., Huber, G., Kozak, C. &Matus, A. (1990) Molecular cloning of MAP 1 (MAP 1A) and MAP 5 (MAP 1B): identification of distinct genes and their differential expression in developing brain.Journal of Neurochemistry55, 146–54. PubMed Google Scholar
Garner, C. C., Matus, A., Anderton, B. &Calvert, R. (1989) Microtubule-associated proteins MAP 5 and MAP 1x: closely related components of the neuronal cytoskeleton with different cytoplasmic distribution in the developing brain.Molecular Brain Research5, 85–92. PubMed Google Scholar
Girault, J. A., Hemmings, H. C. Jr., Williams, K. R., Nairn, A. C. &Greengard, P. (1989) Phosphorylation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein by casein kinase II.Journal of Biological Chemisfry264, 21748–59. Google Scholar
Girault, J. A., Hemmings, H. C. Jr., Zorn, S. H., Gustafson, E. L. &Greengard, P. (1990) Characterization in mammalian brain of a DARPP-32 serine kinase identical to casein kinase II.Journal of Neurochemistry55, 1772–83. PubMed Google Scholar
Gogstad, G. O. &Krutnes, M. -B. (1982) Measurement of protein in cell suspensions using the Coomassie Brilliant Blue dye-binding assay.Analytical Biochemistry126, 355–9. PubMed Google Scholar
Gordon-Weeks, P. R. (1987) The cytoskeletons of isolated, neuronal growth cones.Neuroscience21, 977–89. PubMed Google Scholar
Gordon-Weeks, P. R. (1991) Growth cones: the mechanism of neurite advance.BioEssays13, 235–9. PubMed Google Scholar
Gordon-Weeks, P. R. &Lang, R. D. A. (1988) The α-tubulin of the growth cone is predominantly in the tyrosinated form.Developmental Brain Research42, 156–60. Google Scholar
Gordon-Weeks, P. R. &Lockerbie, R. O. (1984) Isolation and partial characterization of neuronal growth cones from neonatal rat forebrain.Neuroscience13, 119–36. PubMed Google Scholar
Gordon-Weeks, P. R. &Mansfield, S. G. (1991) The assembly of microtubules in growth cones: the role of microtubule-associated proteins. In_The Nerve Growth Cone_ (edited byKater, S. B., Letourneau, P. C. &Macagno, E. R.). New York: Raven Press, in press. Google Scholar
Gordon-Weeks, P. R., Mansfield, S. G. &Curran, I. (1989) Direct visualization of the soluble pool of tubulin in the neuronal growth cone: immunofluorescence studies following taxol polymerisation.Developmental Brain Research49, 305–10. PubMed Google Scholar
Goslin, K., Schreyer, D. J., Skene, J. H. P. &Banker, G. A. (1988) Development of neuronal polarity: GAP-43 distinguishes axonal from dendritic growth cones.Nature336, 672–4. PubMed Google Scholar
Greene, L. A., Liem, R. K. H. &Shelanski, M. L. (1983) Regulation of a high molecular weight microtubule associated protein in PC12 cells by nerve growth factor.Journal of Cell Biology96, 76–83. Google Scholar
Gundersen, G. G., Kalnoski, M. H. &Bulinski, J. C. (1984) Distinct populations of microtubules: tyrosinated and nontyrosinated alpha-tubulins are distributed differently in vivo.Cell38, 779–89. PubMed Google Scholar
Hasegawa, M., Arai, T. &Ihara, Y. (1990) Immunochemical evidence that fragments of phosphorylated MAP5 (MAP 1B) are bound to neurofibrillary tangles in Alzheimer's disease.Neuron4, 909–18. PubMed Google Scholar
Hoshi, M., Nishida, E., Inagaki, M., Gotoh, Y. &Sakai, H. (1990) Activation of a serine/-threonine kinase that phosphorylates microtubule-associated protein 1B_in vitro_ by growth factors and phorbol esters in quiescent rat fibroblastic cells.European Journal of Biochemistry193, 513–19. PubMed Google Scholar
Iimoto, D. S., Masliah, E., Deteresa, R., Terry, R. D. &Saitoh, T. (1989) Aberrant casein kinase II in Alzheimer's disease.Brain Research507, 273–80. Google Scholar
Kilmartin, J. V., Wright, B. &Milstein, C. (1982) Rat monoclonal antitubulin antibodies derived using a new non-secreting rat cell line.Journal of Cell Biology93, 576–82. PubMed Google Scholar
Kuznetsov, S. A., &Gelfand, V. I. (1987) 18kDa microtubule associated protein: identification as a new light chain (LC-3) of microtubule associated protein 1 (MAP 1).FEBS Letters212, 145–8. PubMed Google Scholar
Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature227, 680–5. PubMed Google Scholar
Letourneau, P. C. &Ressler, A. H. (1984) Inhibition of neurite initiation and growth by taxol.Journal of Cell Biology98, 1355–62. Google Scholar
Levi, G., Aloisi, F., Ciotti, M. T. &Gallo, V. (1984) Autoradiographic localisation and depolarisation-induced release of acidic amino acids in differentiating cerebellar granule cell cultures.Brain Research290, 77–86. PubMed Google Scholar
Lindwall, G. &Cole, R. D. (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly.Journal of Cell Biological Chemistry259, 5301–5. Google Scholar
Lockerbie, R. O. (1987) The neuronal growth cone: a review of its locomotory, navigational and target recognition capabilities.Neuroscience20, 719–29. PubMed Google Scholar
Mansfield, S. G. &Gordon-Weeks, P. R. (1990) Post-translational modification of tubulin in rat cerebral cortical neurons extending neurites in culture: effects of taxol.Journal of Physiology426, 118P. Google Scholar
Mansfield, S. G. &Gordon-Weeks, P. R. (1991) Dynamic post-translational modification of tubulin in rat cerebral cortical neurons extending neurites in culture: effects of taxol.Journal of Neurocytology20, 654–66. Google Scholar
Matus, A. (1988) Microtubule-associated proteins: their potential role in determining neuronal morphology.Annual Review of Neuroscience11, 29–44. PubMed Google Scholar
Meiri, K. &Gordon-Weeks, P. R. (1990) GAP-43 in growth cones is associated with areas of membrane that are tightly bound to substrate, and is a component of a membrane skeleton subcellular fraction.Journal of Neuroscience10, 256–66. PubMed Google Scholar
Murthy, A. &Flavin, M. (1983) Microtubule assembly using the microtubule associated protein MAP 2 prepared in defined states of phosphorylation with protein kinase and phosphatase.European Journal of Biochemistry137, 37–46. PubMed Google Scholar
Noble, M., Lewis, S. A. &Cowan, N. J. (1989) The microtubule binding domain of microtubule associated protein MAP 1B contains a repeated sequence motif unrelated to that of MAP 2 and tau.Journal of Cell Biology109, 3367–76. PubMed Google Scholar
Olmsted, J. B. (1986) Microtubule-associated proteins.Annual Review of Neuroscience11, 29–44. Google Scholar
Pfenninger, K. H., Ellis, L., Johnson, M. P., Friedman, L. B., &Somlo, S. (1983) Nerve growth cones isolated from fetal rat brain. Subcellular fractionation and characterization.Cell35, 573–84. PubMed Google Scholar
Pisano, M. R., Hegazy, M. G., Reimann, E. M. &Lokas, L. A. (1988) Phosphorylation of protein B-50 (GAP-43) from adult rat brain cortex by casein kinase II.Biochemical and Biophysical Research Communications155, 1207–1212. PubMed Google Scholar
Ramón Y Cajal, S. (1890) A quelle époque apparaissent les expensions des cellules nerveuses de la môlle épinière du populet?Anatomischer Anzeiger21, 609–13, 631–9. Google Scholar
Read, S. M. &Northcote, D. H. (1981) Minimisation of variation in the response to different proteins of the Coomassie Blue G dye-binding assay for protein.Analytical Biochemistry116, 53–64. PubMed Google Scholar
Riederer, B., Cohen, R. &Matus, A. (1986) MAP 5: a novel microtubule associated protein under strong developmental regulation.Journal of Neurocytology15, 763–75. Google Scholar
Riederer, B. M., Guadano-Ferraz, A. &Innocenti, G. M. (1990) Difference in distribution of microtubule-associated proteins 5a and 5b during the development of cerebral cortex and corpus callosum in cats: dependence on phosphorylation.Developmental Brain Research56, 235–43. PubMed Google Scholar
Sargent, P. B. (1990) What distinguishes axons from dendrites? Neurons know more than we do.Trends in Neuroscience12, 203–5. Google Scholar
Sato-Yoshitake, R., Shiomura, Y., Miyasaka, H. &Hirokawa, N. (1989) Microtubule associated protein 1B: molecular structure, localization and phosphorylation-dependent expression in developing neurons.Neuron3, 229–38. PubMed Google Scholar
Schiff, P. B., Fant, J. &Howitz, S. B. (1979) Promotion of microtubule assembly_in vitro_ by taxol.Nature277, 665–7. PubMed Google Scholar
Schoenfeld, J. A., Mckerracher, L., Obar, R. &Vallee, R. B. (1989) MAP 1A and MAP 1B are structurally related microtubule associated proteins with distinct developmental patterns in the CNS.Journal of Neuroscience9, 1712–30. PubMed Google Scholar
Serrano, L., Hernandez, M. A., Diaz-Nido, J. &Avila, J. (1989) Association of casein kinase II with microtubules.Experimental Cell Research181, 263–72. PubMed Google Scholar
Tsao, H., Aletta, J. M. &Greene, L. A. (1990) Nerve Growth Factor and Fibroblast Growth Factor selectively activate a protein kinase that phosphorylates high molecular weight microtubule-associated proteins.Journal of Biological Chemistry265, 15471–80. PubMed Google Scholar
Viereck, C. &Matus, A. (1990) The expression of phosphorylated and non-phosphorylated forms of MAP 5 in the amphibian CNS.Brain Research508, 257–64. PubMed Google Scholar
Viereck, C., Tucker, R. P. &Matus, A. (1989) The adult rat olfactory system expresses microtubule-associated proteins found in the developing brain.Journal of Neuroscience9, 3547–57. Google Scholar
Wiche, G., Oberkanins, C. &Himmler, A. (1991) Molecular structure and function of microtubule-associated proteins.International Review of Cytology124, 217–73. PubMed Google Scholar
Yamada, K. M., Spooner, B. S. &Wessells, N. K. (1970) Axon growth: roles of microfilaments and microtubules.Proceedings of the National Academy of Science (USA)66, 1206–12. Google Scholar