Ionic channels formed byStaphylococcus aureus alpha-toxin: Voltage-dependent inhibition by divalent and trivalent cations (original) (raw)

References

  1. Arbuthnott, J.P., Freer, J.H., Billcliffe, B. 1973. Lipid-induced polymerization of staphylococcal α-toxin.J. Gen. Microbiol. 75:309–319
    PubMed Google Scholar
  2. Bashford, C.L., Alder, G.M., Patel, K., Pasternak, C.A. 1984. Common action of certain viruses, toxins and activated complement: Pore formation and its prevention by extracellular Ca2+.Biosci. Rep. 4:797–805
    PubMed Google Scholar
  3. Benz, R., Darveau, R.P., Hancock, R.E.W., 1984. Outer membrane protein PhoE from_Escherichia coli_ forms anion selective pores in lipid-bilayer membranes.Eur. J. Biochem. 140:319–324
    PubMed Google Scholar
  4. Benz, R., Ishii, J., Nakae, T. 1980. Determination of ion permeability through the channels made of porins from the outer membrane of_Salmonella typhimurium_ in lipid bilayer membranes.J. Membrane Biol. 56:19–29
    Google Scholar
  5. Bhakdi, S., Füssle, R., Tranum-Jensen, J. 1981. Staphylococcal α-toxin: Oligomerization of hydrophilic monomers to form amphiphilic hexamers induced through contact with deoxycholate detergent micelles.Proc. Natl. Acad. Sci. USA 78:5475–5479
    PubMed Google Scholar
  6. Bhakdi, S., Muhly, M., Füssle, R. 1984. Correlation between toxin binding and hemolytic activity in membrane damage by staphylococcal alpha-toxin.Infect. Immunol. 46:318–323
    Google Scholar
  7. Bhakdi, S., Tranum-Jensen, J. 1983. Membrane damage by channel-forming proteins.Trends Biochem. Sci. 8:134–136
    Google Scholar
  8. Bhakdi, S., Tranum-Jensen, J. 1984. Mechanism of complement cytolysis and the concept of channel-forming proteins.Philos. Trans. R. Soc. London B. 306:311–324
    Google Scholar
  9. Bockris, J.O.M., Reddy, A.K.N. 1970. Modern Electrochemistry. Vol. 1, Plenum, New York
    Google Scholar
  10. Boheim, G., Kolb, H.-A. 1978. Analysis of the multi-pore system of alamethicin in a lipid membrane. I. Voltage-jump current-relaxation measurements.J. Membrane Biol. 38:99–150
    Google Scholar
  11. Bukelew, A.R., Colacicco, G. 1971. Lipid monolayers. Interaction with staphylococcal α-toxin.Biochim. Biophys. Acta 233:7–16
    PubMed Google Scholar
  12. Cassidy, P., Six, A.R., Harshmann, S. 1974. Biological properties of Staphylococcal α-toxin.Biochim. Biophys. Acta 332:413–425
    Google Scholar
  13. Colquohun, D., Hawkes, A.G. 1977. Relaxation and fluctuations of membrane currents that flow through drug-operated ion channels.Proc. R. Soc. London 199:231–262
    Google Scholar
  14. Coronado, R., Miller, C. 1979. Voltage-dependent caesium blockade of a cation channel from fragmented sarcoplasmic reticulum.Nature (London) 280:807–810
    Google Scholar
  15. Davidson, V.L., Brunden, K.R., Cramer, W.A., Cohen, F.S. 1984. Studies on the mechanism of action of channel-forming colicins using artificial membranes.J. Membrane Biol. 79:105–118
    Google Scholar
  16. Ehrenstein, G., Lecar, H. 1977. Electrically gated ionic channels in lipid bilayers.Q. Rev. Biophys. 10:1–34
    PubMed Google Scholar
  17. Eisenberg, M., Gresalfi, T., Riccio, T., McLaughlin, S. 1979. Adsorption of monovalent cations to bilayer membranes containing negative phospholipids.Biochemistry 18:5213–5223
    PubMed Google Scholar
  18. Freer, J.H. 1982. Cytolytic toxins and surface activity.Toxicon 20:217–221
    PubMed Google Scholar
  19. Freer, J.H., Arbuthnott, J.P., Bernheimer, A.W. 1968. Interaction of staphylococcal α-toxin with artificial and natural membranes.J. Bacteriol. 95:1153–1168
    PubMed Google Scholar
  20. Freer, J.H., Arbuthnott, J.P., Bilcliffe, B. 1973. Effects of staphylococcal α-toxin on the structure of erythrocytes membranes.J. Gen. Microbiol. 75: 321–332
    PubMed Google Scholar
  21. Füssle, R., Bhakdi, S., Sziegoleit, A., Tranum-Jensen, J., Kranz, T., Wellensiek, H.J. 1981. On the mechanism of membrane damage by_Staphylococcus aureus_ α-toxin.J. Cell Biol. 91:83–94
    PubMed Google Scholar
  22. Gordon, L.G.M., Haydon, D.A. 1975. Potential dependent conductances in lipid membranes containing alamethicin.Philos. Trans. R. Soc. London B. 270:433–447
    Google Scholar
  23. Harshman, S. 1979. Action of staphylococcal α-toxin on membranes: Some recent advances.Mol. Cell. Biochem. 23:142–152
    Google Scholar
  24. Harshman, S., Sugg, N. 1985. Effect of calcium ions on staphylococcal alpha-toxin induced hemolysis of rabbit ervthrocytes.Infect. Immunol. 47:37–40
    Google Scholar
  25. Lee, K.S., Akaike, N., Brown, A.M. 1978. Properties of internally perfused, voltage-clamped, isolated nerve cell bodies.J. Gen. Physiol. 71:489–507
    PubMed Google Scholar
  26. Martin, R.B., Richardson, F.S. 1979. Lanthanides as probes for calcium in biological systems.Q. Rev. Biophys. 12:181–209
    PubMed Google Scholar
  27. McLaughlin, A., Grathwohl, C., McLaughlin, S. 1978. The adsorption of divalent cations to phosphatidylcholine bilayer membranes.Biochim. Biophys. Acta 513:338–357
    Google Scholar
  28. McLaughlin, S., Mulrine, N., Gresalfi, T., Vaio, G., McLaughlin, A. 1981. Adsorption of divalent cations to bilayer membranes containing phosphatidylserine.J. Gen. Physiol. 77:445–473
    Google Scholar
  29. Menestrina, G., Antolini, R. 1981. Ion transport through hemocyanin channels in oxidized cholesterol artificial bilayer membranes.Biochim. Biophys. Acta 643:616–625
    PubMed Google Scholar
  30. Menestrina, G., Maniacco, D., Antolini, R. 1983. A kinetic study of the opening and closing properties of the hemocyanin channel in artificial lipid bilayer membranes.J. Membrane Biol. 71:173–182
    Google Scholar
  31. Menestrina, G., Porcelluzzi, C. 1985. Dependence of ion flow through the hemocyanin channel on a fixed charge at the pore mouth: Effects of H− and Ca2+ ions.Biochim. Biophys. Acta (in press)
  32. Methfessl, C., Boheim, G. 1982. The gating of single Ca2+-dependent K+ channels is described by an activation/blockade mechanism.Biophys. Struct. Mech. 9:35–60
    Google Scholar
  33. Moczydlowski, E., Latorre, R. 1985. Gating kinetics of Ca2+ activated K+ channels from rat muscle incorporated into planar lipid bilayers.J. Gen. Physiol. 82:511–542
    Google Scholar
  34. Montal, M., Mueller, P. 1972. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties.Proc. Natl. Acad. Sci. USA 69:3561–3566
    PubMed Google Scholar
  35. Pasternak, C.A., Bashford, C.L., Micklem, K.J. 1985. Ca2+ and the interaction of pore formers with membranes.J. Biosci. 8:273–291
    Google Scholar
  36. Pitzer, K.S. 1979. Theory: Ion interaction approach.In: Activity Coefficients in Electrolyte Solutions. R.M. Pytkovicz, editor. Vol. 1, pp. 158–208. CRC Press, Boca Raton, Florida
    Google Scholar
  37. Raymond, L., Slatin, S.L., Finkelstein, A. 1985. Channels formed byColicin E1 in planar lipid bilayers are larg and exhibit pH-dependent ion selectivity.J. Membrane Biol. 84:173–181
    Google Scholar
  38. Schultz, S.G. 1980. Basic Principles of Membrane Transport. Cambridge University Press, New York
    Google Scholar
  39. Tobkes, N., Wallace, B.A., Bayley, H. 1985. Secondary structure and assembly mechanism of an oligomeric channel protein.Biochemistry 24:1915–1920
    PubMed Google Scholar
  40. Williams, R.J.P. 1952. The stability of complexes of the group IIA metal ions.J. Chem. Soc. 3770–3778
  41. Woodhull, A.M. 1973. Ionic blockage of sodium channels in nerve.J. Gen. Physiol. 61:687–708
    Google Scholar

Download references