Syndecan family of cell surface proteoglycans: Developmentally regulated receptors for extracellular effector molecules (original) (raw)
References
Andres, J., DeFalcis, D., Noda, M., and Massagué, J., Binding of two growth factor families to separate domains of the proteoglycan betaglycan. J. biol. Chem.267 (1992) 5827–5930. Article Google Scholar
Baciu, P., Acaster, C., and Goetinck, P. F., Temporal and spatial expression of syndecan-4 during avian embryonic development. Molec. Biol. Cell_4_ (1993) 413a. Google Scholar
Bernfield, M., Banerjee, S., and Cohn, R., Dependence of salivary epithelial morphology and branching morphogenesis upon acid mucopolysaccharide-protein (proteoglycan) at the epithelial surface J. Cell Biol.52 (1972) 674–689. ArticleCASPubMedPubMed Central Google Scholar
Bernfield, M., Kokenyesi, R., Kato, M., Hinkes, M. T., Spring, J., Gallo, R. L., and Lose, E. J., Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. A. Rev. Cell Biol.8 (1992) 365–393. ArticleCAS Google Scholar
Brauker, J., Trautman, M., and Bernfield, M., Syndecan, a cell surface proteoglycan exhibits molecular polymorphism during lung development. Devl Biol.147 (1991) 285–292. ArticleCAS Google Scholar
Brittis, P., Canning, D., and Silver, J., Chondroitin sulfate as a regulator of neuronal patterning in the retina. Science_255_ (1992) 733–736. ArticleCASPubMed Google Scholar
Brown, T. A., Bouchard, T., St. John, T., Wayner, E., and Carter, W. G., Human keratinocytes express a new CD44 core protein (CD44E) as a heparan-sulfate intrinsic membrane proteoglycan with additional exons. J. Cell Biol.113 (1991) 207–221. ArticleCASPubMed Google Scholar
Cardin, A. D., and Weintraub, H. J. R., Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis_9_ (1989) 21–32. ArticleCASPubMed Google Scholar
Carey, D. J., Evans D. M., Stahl, R. C., Asundi, V. K., Conner, K. J., Garbes, P., and Cizmeci, S. G., Molecular cloning and characterization of N-syndecan, a novel transmembrane heparin sulfate proteoglycan. J. Cell Biol.117 (1992) 191–201. ArticleCASPubMed Google Scholar
Carey, D. J., Stahl, R. C., Cizmeci-Smith, G., and Asundi, V. K., Syndecan-1 expressed in Schwann cells causes morphological transformation and cytoskeletal reorganization and associates with actin during cell spreading. J. Cell Biol.124 (1994) 161–170. ArticleCASPubMed Google Scholar
Chang, J.-Y., Binding of heparin to human antithrombin III activates selective chemical modification at lysine 236. LYS-107, LYS-125 and LYS-136 are situated within the heparin-binding site of antithrombin III. J. biol. Chem.264 (1898) 3111–3115. Article Google Scholar
Chernousov, M. A., and Carey, D. J., N-syndecan (syndecan 3) from neonatal rat brain binds basic fibroblast growth factor. J. biol. Chem.268 (1993) 16810–16814. ArticleCASPubMed Google Scholar
Chiquet-Ehrismann, R., Anti-adhesive proteins of the extracellular matrix. Curr. Opin. Cell Biol.3 (1991) 800–804. ArticleCASPubMed Google Scholar
David, G., Lories, V., Decock, B., Marynen, P., Cassiman, J.-J., and Van Den Berghe, H., Molecular cloning of a phosphatidylinositol-anchored membrane heparan sulfate proteoglycan from human lung fibroblasts. J. Cell Biol.III (1990) 3165–3176. Article Google Scholar
David, G., van der Schueren, B., Marynen, P., Cassiman, J.-J., and Van Den Berghe, H., Molecular cloning of amphiglycan, a novel integral membrane heparan sulfate proteoglycan expressed by epithelial and gibroblastic cells. J. Cell Biol.118 (1992) 961–969. ArticleCASPubMed Google Scholar
David, G., Xiao, M. B., Van der Schueren, B., Marynen P., Cassiman, J.-J., and Van Den Berghe, H., Spatial and temporal changes in the expression of fibroglycan (syndecan-2) during mouse embryonic development. Development_119_ (1993) 841–854. ArticleCASPubMed Google Scholar
Elenius, K., and Jalkanen, M., Function of the syndecans — a family of cell surface proteoglycans. J. Cell Sci.107 (1994) 2975–2982. ArticleCASPubMed Google Scholar
Elenius, K., Maatta, A., Salmivirta, M., and Jalkanen, M., Growth factors induce 3T3 cells to express bFGF-binding syndecan. J. biol. Chem.267 (1992) 6435–6441. ArticleCASPubMed Google Scholar
Elenius, K., Salmivirta, M., Inki, P., Mali, M., and Jalkanen, M. Binding of human syndecan to extracellular matrix proteins. J. biol. Chem.265 (1990) 17837–17843. ArticleCASPubMed Google Scholar
Fritz, T. A., Lugemwa, F. N., Sarkar, A. K., and Esko, J. D., Biosynthesis of heparan sulfate on beta-D-xylosides depends on aglycone structure. J. biol. Chem.269 (1994) 300–307. ArticleCASPubMed Google Scholar
Gallagher, J. T., The extended family of proteoglycans: social residents of the pericellular zone. Curr. Opin. Cell Biol.4 (1989) 766–771. Google Scholar
Gallagher, J. T., Turnbull, J. E., and Lyon, M., Patterns of sulphation in heparan sulphate: polymorphism based on a common structural theme. Int. J. Biochem.24 (1992) 553–560. ArticleCASPubMed Google Scholar
Gallo, R. L., Siebert, E., and Bernfield, M., Members of the syndecan family of heparan sulfate proteoglycans show distinct expression during mouse development. Molec. Biol. Cell_4_ (1993) 413a. Google Scholar
Gould, S. E., Upholt, W. B., and Kosher, R. A., Syndecan 3: a member of the syndecan family of membrane-intercalated proteoglycans that is expressed in high amounts at the onset of chicken limb cartilage differentiation. Proc. natl Acad. Sci. USA_89_ (1992) 3271–3275. ArticleCASPubMedPubMed Central Google Scholar
Guimond, S., Maccarana, M., Olwin, B. B., Lindahl, U., and Rapraeger, A. C., Activating and inhibitory heparin sequences for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2, and FGF-4. J. biol. Chem.268 (1993) 23906–23914. ArticleCASPubMed Google Scholar
Habuchi, H., Suzuki, S., Saito, T., Tamura, T., Harada, T., Yoshida, K., and Kimata, K., Structure of a heparan sulphate oligosaccharide that binds to basic fibroblast growth factor. Biochem. J.285 (1992) 805–813. ArticleCASPubMedPubMed Central Google Scholar
Hayashi, K., Hayashi, M., Jalkanen, M., Firestone, M., Trelstad, R., and Bernfield, M., Immunocytochemistry of cell surface heparan sulfate proteoglycan in mouse tissues: a light and electron microscopic study. J. Histochem. Cytochem.35 (1987) 1079–1088. ArticleCASPubMed Google Scholar
Hayashi, K., Madri, J. A., and Yurchenco, P. D., Endothelial cells interact with the core protein of basement membrane perlecan through beta 1 and beta 3 integrins: an adhesion modulated by glycosaminoglycan. J. Cell Biol.119 (1992) 945–957. ArticleCASPubMed Google Scholar
Heine, U., Munoz, E., Flanders, K., Ellingsworth, L., Lam, H., Thompson, N., Roberts, A., and Sporn, M., Role of transforming growth factor-beta in development of the mouse embryo. J. Cell Biol.105 (1989) 2861–2876. Article Google Scholar
Heino, J., Integrin-type extracellular matrix receptors in cancer and inflammation. Ann. Med.25 (1993) 335–342. ArticleCASPubMed Google Scholar
Hynes, R. O., Integrins: versatility, modulation, and signaling in cell adhesion. Cell_69_ (1992) 11–25. ArticleCASPubMed Google Scholar
Iida, J., Skubitz, A. P., Furcht, L. T., Wayner, E. A., and McCarthy, J. B., Coordinate role for cell surface chondroitin sulfate proteoglycan and alpha 4 beta 1 integrin in mediating melenoma cell adhesion to fibronectin. J. Cell Biol.118 (1992) 431–444. ArticleCASPubMed Google Scholar
Ishihara, M., Tyrrell, D. J., Stauber, G. B., Brown, S., Cousens, L. S., and Stack, R. J., Preparation of affinity-fractionated, heparin-derived oligosaccharides and their effects on selected biological activities mediated by basic fibroblast growth factor. J. biol. Chem.268 (1993) 4675–4683. ArticleCASPubMed Google Scholar
Jackson, R., Bush, S., and Cardin A., Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol. Rev.71 (1991) 481–539. ArticleCASPubMed Google Scholar
Jalkanen, M., Elenius, K., and Rapraeger, A., Syndecan: Regulator of cell morphology and growth factor action at the cell-matrix interface. Trends Glycosci. Glycotechnol.5 (1993) 107–120. ArticleCAS Google Scholar
Jalkanen, M., Rapraeger, A., Saunders, S., and Bernfield, M., Cell surface proteoglycan of mammary epithelial cells is shed by cleavage of its matrix-binding ectodomain from its membrane-associated domain. J. Cell Biol.105 (1987) 3087–3096. ArticleCASPubMed Google Scholar
Jalkanen, S. and Jalkanen, M., Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. J. Cell Biol.116 (1992) 817–825. ArticleCASPubMed Google Scholar
Kan, M., Wang, F., Xu, J., Crabb, J. W., Hou, J., and McKeehan, W. L., An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science_259_ (1993) 1918–1921. ArticleCASPubMed Google Scholar
Keynes, R., and Cook, G., Cell-cell repulsion: Clues from the growth cone? Cell_62_ (1990) 609–610. ArticleCASPubMed Google Scholar
Kiefer, M., Stephens, J., Crawford, K., Okino, K., and Barr, P., Ligand-affinity cloning and structure of a cell surface proteoglycan that binds basic fibroblast growth factor. Proc. natl Acad. Sci. USA_87_ (1990) 6985–6989. ArticleCASPubMedPubMed Central Google Scholar
Kim, C., Goldberger, O., Gallo, R. L., and Bernfield, M., Individual members of the syndecan family of heparan sulfate proteoglycans show cell- and tissue-specific expression. Mol. Biol. Cell_4_ (1993) 413a. Google Scholar
Kjellén, L., and Lindahl, U., Proteglycans: Structures and interactions. A. Rev. Biochem.60, (1991) 443–475. Article Google Scholar
Koda, J. Rapraeger, A., and Bernfield, M., Heparan sulfate proteoglycans from mouse mammary epithelial cells. Cell surface proteoglycan as a receptor for interstitial collagens. J. biol. Chem.260 (1985) 8157–8162. ArticleCASPubMed Google Scholar
Kojima, T., Shworak, N. W., and Rosenberg, R. D., Molecular cloning and expression of two distinct cDNA-encoding heparan sulfate proteoglycan core proteins from a rat endothelial cell line. J. biol. Chem.267 (1992) 4870–4877. ArticleCASPubMed Google Scholar
Kojima, T., Inazawa, J., Takamatsu, J., Rosenberg, J. D., and Saito, H., Human ryudocan core protein: Molecular cloning and characterization of the cDNA, and chromosomal localization of the gene. Biochem. biophys. Res. Commun.190 (1993) 814–822. ArticleCASPubMed Google Scholar
Kokenyesi, R., and Bernfield, M., Core protein structure and sequence determine the site and presence of heparan sulfate and chrondroitin sulfate on syndecan-1. J. biol. Chem.269 (1994) 12304–12309. ArticleCASPubMed Google Scholar
Leppä, S., Mali, M., Miettinen, H. M., and Jalkanen, M., Syndecan expression regulates cell morphology and growth of mouse mammary epithelial tumor cells. Proc. natl Acad. Sci. USA_89_ (1992) 932–936. ArticlePubMedPubMed Central Google Scholar
Lindahl, U., Lidholt, K., Spillmann, D., and Kjellén, L., More to ‘heparin’ than anticoagulation. Thromb. Res.75 (1994) 1–32. ArticleCASPubMed Google Scholar
Lyon, M., Deakin, J. A., and Gallagher, J. T., Liver heparan sulfate structure: A novel molecular design. J. biol. Chem.269 (1994) 11208–11215. ArticleCASPubMed Google Scholar
Lyon, M., Deakin, J. A., Mizuno, K., Nakamura, T., and Gallagher, J. T., Interaction of hepatocyte growth factor with heparan sulfate: Elucidation of the major heparan sulfate structural determinants. J. biol. Chem.269 (1994) 11216–11223. ArticleCASPubMed Google Scholar
Maccarana, M., Casu, B., and Lindahl, U., Minimal sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor. J. biol. Chem.268 (1993) 23898–23905. ArticleCASPubMed Google Scholar
Maccarana, M., and Lindahl, U., Mode of interaction between platelet factor 4 and heparin. Glycobiology_3_ (1993) 271–277. ArticleCASPubMed Google Scholar
Mach, H., Volkin, D. B., Burke, C. J., Middaugh, C. R., Linhardt, R. J., Fromm, J. R., Loganathan, D., and Mattsson, L., Nature of the interaction of heparin with acidic fibroblast growth factor. Biochemistry_32_ (1993) 5480–5489. ArticleCASPubMed Google Scholar
Mali, M., Andtfolk, H., Miettinen, H., and Jalkanen, M., Suppression of tumor cell growth by syndecan-1 ectodomain. J. biol. Chem.269 (1994) 27795–27798. ArticleCASPubMed Google Scholar
Mali, M., Elenius, K., Miettinen, H. M., and Jalkanen, M., Inhibition of basic fibroblast growth factor-induced growth promotion by overexpression of syndecan-1. J. biol. Chem.268 (1993) 24215–24222. ArticleCASPubMed Google Scholar
Mali, M., Jaakkola, P., Arvilommi, A.-M., and Jalkanen, M., Sequence of human syndecan indicates a novel gene family of integral membrane proteoglycans. J. biol. Chem.265 (1990) 6884–6889. ArticleCASPubMed Google Scholar
Margalit, H., Fischer, N., and Sa, B-S., Comparative analysis of structurally defined heparin binding sequences reveals a distinct spatial distribution of basic residues. J. biol. Chem.268 (1993) 19228–19231. ArticleCASPubMed Google Scholar
Maryen, P., Zhang, J., Cassiman, J.-J., Van Den Berghe, H., and David, G., Partial primary structure of the 48- and 90-kilodalton core proteins of cell surface-associated heparan sulfate proteoglycans of lung fibroblasts. J. biol. Chem.264 (1989) 7017–7024. ArticleCAS Google Scholar
Miettinen, H., Edwards, S., and Jalkanen, M., Analysis of transport and targeting of syndecan-1: Effect of cytoplasmic tail deletions. Molec. Biol. Cell_5_ (1994) 1325–1339. ArticleCASPubMedPubMed Central Google Scholar
Miettinen, H. M., and Jalkanen, M., The cytoplasmic domain of syndecan-1 is not required for association with the detergent-insoluble cytoskeleton. J. Cell Sci.107 (1994) 1571–1581. ArticleCASPubMed Google Scholar
Mina, M., and Kollar, E., The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch. Oral Biol.32 (1987) 123–127. ArticleCASPubMed Google Scholar
Mitsiadis, T., Salmivirta, M., Muramatsu, T., Muramatsu, H., Rauvala, H., Lehtonen, E., Jalkanen, M., and Thesleff, I., Expression of the heparin-binding cytokines, midkine (MK) and HB-GAM (pleiotrophin), is associated with epithelial mesenchymal interactions during fetal development and organogenesis. Development_121_ (1995) 37–51. ArticleCASPubMed Google Scholar
Noonan, D., Fulle, A., Valente, P., Cai, S., Horigan, E., Sasaki, M., Yoshihiko, Y., Yamada, Y., and Hassell, R., The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveal extensive similarity with laminin A chain, low density lipoprotein receptor and the neural cell adhesion molecule. J. biol. Chem.266 (1991) 22939–22947. ArticleCASPubMed Google Scholar
Nurcombe, V., Ford, M. D., Wildschut, J. A. and Bartlett, P. F., Developmental regulation of neural response to FGF-1 and FGF-2 by heparan sulfate proteoglycan. Science_260_ (1993) 103–106. ArticleCASPubMed Google Scholar
Olwin, B. B., and Rapraeger, A., Repression of myogenic differentiation by aFGF, bFGF, and K-FGF is dependent on cellular heparan sulfate. J. Cell Biol.118 (1992) 631–639. ArticleCASPubMed Google Scholar
Parkkinen, J., Raulo, E., Merenmies, J., Nolo, R., Kajander, E. O., Baumann, M., and Rauvala, H., Amphoterin, the 30-kDa protein in a family of HMG1-type polypeptides. Enhanced expression in transformed cells, leading edge localization, and interactions with plasminogen activation. J. biol. Chem.268 (1993) 19726–19738. ArticleCASPubMed Google Scholar
Parkkinen, J., and Rauvala, H., Interactions of plasminogen and tissue plasminogen activator (t-PA) with amphoterin. Enhancement of t-PA-catalyzed plasminogen activation by amphoterin. J. biol. Chem.266 (1991) 16730–16735. ArticleCASPubMed Google Scholar
Pierce, A., Lyon, M., Hampson, I. N., Cowling, G. J., and Gallagher, J. T., Molecular cloning of the major cell surface heparan sulfate proteoglycan from rat liver. J. biol. Chem.267 (1992) 3894–3900. ArticleCASPubMed Google Scholar
Rapraeger, A., Transforming growth factor (type beta) promotes the addition of chondroitin sulfate to the cell surface proteoglycan (syndecan) of mouse mammary epithelia. J. Cell. Biol.109 (1989) 2509–2518. ArticleCASPubMed Google Scholar
Rapraeger, A., Jalkanen, M., and Bernfield, M., Cell surface proteoglycan associates with the cytoskeleton at the basolateral cell surface of mouse mammary epithelial cells. J. Cell Biol.103 (1986) 2683–2696. ArticleCASPubMed Google Scholar
Rapraeger, A., Jalkanen, M., Endo, E., Koda, J., and Bernfield, M., The cell surface proteoglycan from mouse mammary epithelial cells bears chondroitin sulfate and heparan sulfate glycosaminoglycans. J. biol. Chem.260 (1985) 11046–11052. ArticleCASPubMed Google Scholar
Rapraeger, A. C., Krufka, A., and Olwin, B. B., Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science_252_ (1991) 1705–1708. ArticleCASPubMed Google Scholar
Raulo, E., Chernousov, M. J., Carey, D. J., Nolo, R., and Rauvala, H., Isolation of neuronal cell surface receptor of heparin binding growth-associated molecule (HB-GAM). Identifications as N-syndecan (syndecan-3). J. biol. Chem.269 (1994) 12999–13004. ArticleCASPubMed Google Scholar
Raulo, E., Julkunen, I., Merenmies, J., Pihlaskari, R., and Rauvala, H., Secretion and biological activities of heparinbinding growth-associated molecule. Neurite outgrowth-promoting and mitogenic actions of the recombinant and tissue-derived protein. J. biol. Chem.267 (1992) 11408–11416. ArticleCASPubMed Google Scholar
Rauvala, H., An 18-kd heparin-binding protein of developing brain that is distinct from fibroblast growth factors. EMBO J.8 (1989) 2933–2941. ArticleCASPubMedPubMed Central Google Scholar
Sage, H., and Bornstein, P., Extracellular proteins that modulate cell-matrix interactions. J. biol. Chem.266 (1991) 14831–14834. ArticleCASPubMed Google Scholar
Salmivirta, M. Elenius, K., Vainio, S., Hofer, U., Chiquet-Ehrismann, R., Thesleff, I., and Jalkanen, M., Syndecan from embryonic tooth mesenchyme binds tenascin. J. biol. Chem.266 (1991) 7733–7739. ArticleCASPubMed Google Scholar
Salmivirta, M., Heino, J., and Jalkanen, M., Basic fibroblast growth factor-syndecan complex at cell surface or immobilized to matrix promotes cell growth. J. biol. Chem.267 (1992) 17606–17610. ArticleCASPubMed Google Scholar
Salmivirta, M., Mali, M., Heino, J., Hermonen, J., and Jalkanen, M., A novel laminin-binding form of syndecan-1 (cell surface proteoglycan) produced by syndecan-1 cDNA-transfected NIH-3T3 cells. Expl Cell Res.215 (1994) 180–188. ArticleCAS Google Scholar
Salmivirta, M., Rauvala, H., Elenius, K., and Jalkanen, M., Neurite growth-promoting protein (amphoterin, p30) binds syndecan. Expl Cell Res.200 (1992) 444–451. ArticleCAS Google Scholar
San Antonio, J. D., Karnovsky, M. J., Gay, S., Sanderson, R. D., and Lander, A. D., Interactions of syndecan-1 and heparin with human collagens. Glycobiology_4_ (1994) 327–332. Article Google Scholar
San Antonio, J. D., Slover, J., Lawler, J., Karnovsky, M. J., and Lander, A. D., Specificyty in the interactions of extracellular matrix proteins with subpopulations of the glycosaminoglycan heparin. Biochemistry_32_ (1993) 4746–4755. Article Google Scholar
Sanderson, R., Lalor, P., and Bernfield, M., B lymphocytes express and lose syndecan at specific stages of differentiation. Cell Regul.1 (1989) 27–35. ArticleCASPubMedPubMed Central Google Scholar
Sanderson, R., Sneed, T., Young, L., Sullivan, G., and Lander, A., Adhesion of B lymphoid (MPC-11) cells to type I collagen is mediated by the integral membrane proteoglycan, syndecan. J. Immun.148 (1992) 3902–3911. ArticleCASPubMed Google Scholar
Sanderson, R. D., Turnbull, J. E., Gallagher, J. T., and Lander, A. D., Fine structure of heparan sulfate regulates syndecan-1 function and cell behavior. J. biol. Chem.269 (1994) 13100–13106. ArticleCASPubMed Google Scholar
Saunders, S., and Bernfield, M., Cell surface proteoglycan binds mouse mammary epithelial cells to fibronectin and behaves as a receptor for interstitial matrix. J. Cell Biol.106 (1988) 423–430. ArticleCASPubMed Google Scholar
Saunders, S., Jalkanen, M., O'Farrell, S., and Bernfield, M., Molecular cloning of syndecan, and integral membrane proteoglycan. J. Cell Biol.108 (1989) 1547–1556. ArticleCASPubMed Google Scholar
Sneed, T., Stanley, D., Young, L., and Sanderson, R., Interleukin-6 regulates expression of the syndecan-1 proteoglycan on B lymphoid cells. Cells. Immun.153 (1994) 456–467. ArticleCAS Google Scholar
Solursh, M., Reiter, R., Jensen, K., Kato, M., and Bernfield, M., Transient expression of a cell surface heparan sulfate proteoglycan (syndecan) during limb development. Devl Biol.140 (1990) 83–92. ArticleCAS Google Scholar
Spring, J., Paine-Saunders, S., Hynes, R., and Bernlfield, M., Drosophila syndecan: Conservation of a cell surface heparan sulfate proteoglycan. Proc. natl Acad. Sci. USA_91_ (1994) 3334–3338. ArticleCASPubMedPubMed Central Google Scholar
Springer, T. A., The sensation and regulation of interactions with the extracellular environment: The cell biology of lymphocyte adhesion receptors. A. Rev. Cell Biol.6 (1990) 359–402. ArticleCAS Google Scholar
Stamenkovic, I., Aruffo, A., Amiot, M., and Seed, B., The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells. EMBO J.10 (1991) 343–348. ArticleCASPubMedPubMed Central Google Scholar
Stipp, C. S., Litwack, E. D., and Lander, A. D., Cerebroglycan: An integral membrane heparan sulfate proteoglycan that is unique to the developing nervous system are expressed specifically during neuronal differentiation. J. Cell Biol.124 (1994) 149–160. ArticleCASPubMed Google Scholar
Sun, X., Mosher, D., and Rapraeger, A., Heparan sulfate-mediated binding of epithelial cell surface proteoglycan to thrombospondin. J. biol. Chem.264 (1989) 2885–2889. ArticleCASPubMed Google Scholar
Sutherland, A. E., Sanderson, R. D., Mayes, M., Seibert, M., Calarco, P. G., Bernfield, M., and Damsky, C. H., Expression of syndecan, a putative low affinity fiboblast growth factor receptor, in the early mouse embryo. Development_113_ (1991) 339–351. ArticleCASPubMed Google Scholar
Teyton, L., and Peterson, P. A., Assembly and transport of MHC class II molecules. New Biol.4 (1992) 441–447. CASPubMed Google Scholar
Thesleff, I., Jalkanen, M., Vainio, S., and Bernfield, M., Cell surface proteoglycan expression correlates with epithelial-mesenchymal interactions during tooth morphogenesis. Devl Biol.129 (1988) 565–572. ArticleCAS Google Scholar
Thesleff, I., Vainio, S., Salmivirta, M., and Jalkanen, M., Syndecan and tenascin: induction during early tooth morphogenesis and possible interactions. Cell Differ. Dev.32 (1990) 383–389. ArticleCASPubMed Google Scholar
Thompson, L. D., Pantoliano, M. W., and Springer, B. A., Energetic characterization of the basic fibroblast growth factor-heparin interaction: Identification of the heparin binding domain. Biochemistry_33_ (1994) 3831–3840. ArticleCASPubMed Google Scholar
Thompson, S. A., Higashiyama, S., Wood, K., Pollitt, N. S., Damm, D., McEnroe, G., Garrick, B., Ashton, N., Lau, K., Hancock, N., Klagsbrun, M., and Abraham, J. A., Characterization of sequences within heparin-binding EGF-like growth factor that mediate interaction with heparin. J. biol. Chem.269 (1994) 2541–2549. ArticleCASPubMed Google Scholar
Trautman, M., Kimelman, J., and Bernfield, M., Developmental expression of syndecan, an integral membrane proteoglycan, correlates with cell differentiation. Development_111_ (1991) 213–220. ArticleCASPubMed Google Scholar
Turnbull, J. E., Fernig, D. G., Ke, Y., Wilkinson, M. C., and Gallagher, J. T., Identification of the basic fibroblast growth factor binding sequence in fiboblast heparan sulfate. J. biol. Chem.267 (1992) 10337–10341. ArticleCASPubMed Google Scholar
Turnbull, J. E., and Gallagher, J. T., Heparan sulphate: Functional role as a modulator of fibroblast growth factor activity. Biochem. Soc. Trans.21 (1993) 477–482. ArticleCASPubMed Google Scholar
Tyrrell, D. J., Ishihara, M., Rao, N., Horne, A., Kiefer, M. C., Stauber, G. B., Lam, L. H., and Stack, R. J., Structure and biological activities of a heparin-derived hexasaccharide with high affinity for basic fibroblast growth factor. J. biol. Chem.268 (1993) 4684–4689. ArticleCASPubMed Google Scholar
Vaahtokari, A., Vainio, S., and Thesleff, I., Associations between transforming growth factor beta-1 mRNA expression and epithelial-mesenchymal interactions during tooth development. Development_113_ (1991) 985–994. ArticleCASPubMed Google Scholar
Vainio, S., Jalkanen, M., Bernfield, M., and Saxen, L., Transient expression of syndecan mesenchymal cell aggregates of the embryonic kidney. Devl Biol.152 (1992) 221–232. ArticleCAS Google Scholar
Vainio, S., Jalkanen, M., and Thesleff, I., Syndecan and tenascin expression is induced by epithelial-mesenchymal interactions in the embryonic tooth mesenchyme. J. Cell Biol.108 (1989) 1945–1954. ArticleCASPubMed Google Scholar
Vainio, S., Jalkanen, M., Vaahtokari, A., Sahlberg, C., Mali, M., Bernfield, M., and Thesleff, I., Expression of syndecan gene is induced early, is transient, and correlates with changes in mesenchymal cell proliferation during tooth organogenesis. Devl Biol.147 (1991) 322–333. ArticleCAS Google Scholar
Vainio, S., and Thesleff, I., Coordinated induction of cell proliferation and syndecan expression in dental mesenchyme by epithelium: Evidence for diffusible signals. Dev. Dyn.194 (1992) 105–117. ArticleCASPubMed Google Scholar
Walker, A., Turnbull, J. E., and Gallagher, J. T., Specific heparan sulfate saccharides mediate the activity of basic fibroblast growth factor. J. biol. Chem.269 (1994) 931–935. ArticleCASPubMed Google Scholar
Wayner, E., and Carter, W., Identification of multiple cell adhesion receptors for collagen and in fibronectin in human fibrosarcoma cells possessing unique alpha and common beta subunits. J. Cell Biol.105 (1987) 1873–1884. ArticleCASPubMed Google Scholar
Weitzhandler, M., Streeter, H., Henzel, W., and Bernfield, M., The cell surface proteoglycan of mammary epithelial cells. The extracellular domain contains the N terminus and a peptide sequence present in a conditioned medium proteoglycan. J. biol. Chem.263 (1988) 6949–6952. ArticleCASPubMed Google Scholar
Woods, A., and Couchman, J. R., Syndecan 4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component. Molec. Biol. Cell_5_ (1994) 183–192. ArticleCASPubMedPubMed Central Google Scholar
Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P., and Ornitz, D. M., Cell surface, heparan-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell_64_ (1991) 841–848. ArticleCASPubMed Google Scholar