Les phénomènes de pseudopupille dans l'œil composé deDrosophila (original) (raw)
- 355 Accesses
- 7 Altmetric
- 1 Mention
- Explore all metrics
Summary
In the compound eyes of the fruitfly_Drosophila_, the dioptric system of each ommatidium is able to form virtual images of the receptor terminals (rhabdomere tips) throughout the whole depth of the eye. It is shown (§ 3) that 3 characteristic superposition phenomena occur for images formed by distinct ommatidia (Figs. 3b and 5). The most remarkable superposition appears at the point where the optical axes of all ommatidia converge (center of curvature of the eye). At this level, highly magnified virtual and erect images of corresponding rhabdomeres are superimposed, giving rise to a_deep pseudopupil_ (Fig. 9). Since in the ommatidia of_Drosophila_ the rhabdome shows a pattern of 7 distal endings (Fig. 8a), the resulting_deep pseudopupil_ consists of 7 light spots with a similar pattern (Figs. 8b, 7, 11). Conversely the_deep pseudopupil_ of compound eyes which have fused rhabdomes consists of a single light spot (Fig. 19). Such pseudopupils can be best observed either with antidromic or with orthodromic illumination of the eye, according to the specific transmission or reflection properties of the rhabdomes.
The_deep pseudopupil_ of Dipterans is not to be confused with the_corneal pseudopupil_ (Fig. 13 a) and especially not with the_reduced corneal pseudopupil_ observed with a reduced aperture of the microscope (Fig. 13 b), in spite of the remarkable similarity of these phenomena regarding the asymmetry and the dimension of their pattern (comp. Figs. 7 and 13b). The_reduced corneal pseudopupil_ consists of 7 facets whereas the_deep pseudopupil_ consists of 7 virtual images of the receptor endings.
From the results of Kirschfeld (1967), the appearance of a_reduced corneal pseudopupil_ like Fig. 13 b on the eye of_Drosophila_ proves that 7 receptors located in 7 neighbouring ommatidia look in the same direction in space (Fig. 14). The existence of such an optical arrangement favors the view that the eye of_Drosophila_, like that of_Musca_, belongs to the “neural superposition type”.
A comparative study between the_deep pseudopupil_ and the_reduced corneal pseudopupil_ leads to the following geometric relation, which is specific of the_Drosophila_ eye and probably of all compound eyes of the “neural superposition type”: \frac{D}{e} = \frac{R}{{f'}},$$
, where_D_ is the diameter of a facet,e the distance between the centers of two neighbouring rhabdomere endings,R the radius of curvature of the eye, and_f′_ the focal length (in air) of a corneal lens.
Other types of pseudopupils, commonly appearing as dark spots in compound eyes, are explained on a basis similar to the_deep pseudopupil of Drosophila_ (§5). In fact, the dioptric system of an ommatidium can give virtual images not only of its distal receptor endings but of the whole intensity distribution (i.e. the whole “luminous structure”) which is present in its internal focal plane. If this structure is simple, the_deep pseudopupil_, resulting from superpositions of virtual images, is likewise simple (Figs. 16 and 17). If the “luminous structure” is complex, as for example in the eye of the butterfly_Vanessa_ (Fig. 18a schematized in Fig. 18c), then the_deep pseudopupil_ shows the same complexity (Fig. 18 b and d).
In compound eyes which lack screening pigment between their crystalline cones, one can see_secondary pupils of the 1st and 2nd order_ as described by Exner. Again they may be explained by superpositions of virtual images in the depth of the eye, according to Fig. 20. Moreover, the_deep pseudopupil_ of the “optical superposition eye” may be due to the fact that the more distal converging system of an ommatidium forms virtual images not of the rhabdome endings themselves but of real images of these endings (Fig. 21).
Although the phenomenon of the_deep pseudopupil_ is not perceived by the animal, it is of interest for the experimenter who can use it: 1) to study the light receptors easily in the eye of live and intact animals, 2) to measure the physiological divergence angle between adjoining ommatidia, 3) to study the movement of the visual axis and the retinomotor adaptation of the receptors, and 4) to stimulate simultaneously many_corresponding_ receptors belonging to different ommatidia. The advantages of this_in vivo_ technique are discussed in § 6.3.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime Subscribe now
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
Similar content being viewed by others
Références
- Autrum, H.J., Wiedemann, I.: Versuche über den Strahlengang im Insektenauge (Appositionsauge). Z. Naturforsch.17b, 480–482 (1962).
Google Scholar - Braitenberg, V.: Patterns of projection in the visual system of the fly; 1) Retina-Lamina projections. Exp. Brain Res.3, 271–298 (1967).
Article PubMed CAS Google Scholar - Burkhardt, D., Motte, I. de la, Seitz, G.: Physiological optics of the compound eye of the blowfly. (Dans: “The functional organization of the compound eye”; Proc. Symp. Stockholm, 1965). Ed. par C. G. Bernhard. Oxford: Pergamon Press 1966.
Google Scholar - Burtt, E. T., Patterson, J. A.: Infernal muscle in the eye of an insect. Nature (Lond.)228, 183–184 (1970).
Article CAS Google Scholar - Cajal, S. R., Sanchez, D.: Contributiòn al conocimiento de los centros nerviosos de los insectos. Trab. Lab. Invest. Biol. (Madrid)13, 1–164 (1915).
Google Scholar - Carricaburu, P.: Contribution à la dioptrique oculaire des Arthropodes: détermination des indices des milieux transparents de l'ommatidie. (Thèse, Paris 1967, publiée par Soc. hist. nat. Afrique du nord: N∘ 9, nouv. Série, 1968.)
- Demoll, R.: Die Physiologie des Facettenauges. Ergebn. Fortschr. Biol.2, 431–513 (1910).
Google Scholar - Dietrich, W.: Die Facettenaugen der Dipteren. Z. wiss. Zool.92, 465–539 (1909).
Google Scholar - Eckert, M.: Hell-Dunkel-Adaptation in aconen Appositionsaugen der Insekten. Zool. Jb. Physiol.74, 102–120 (1968).
Google Scholar - Exner, S.: Die Physiologie der fazettierten Augen von Krebsen und Insekten. Leipzig und Wien: Deutike 1891.
Book Google Scholar - Franceschini, N., Kirschfeld, K.: Etude optique_in vivo_ des éléments photorécepteurs dans l'œil composé de_Drosophila_. Kybernetik8, 1–13 (1971).
Article PubMed CAS Google Scholar - - -: An automatic gain control in the photoreceptors of_Drosophila._ En préparation.
- Gemperlein, R., Järvilehto, M.: Direkte Beobachtung der Rhabdomere bei_Calliphora erythrocephala_ (Meig.). Z. vergl. Physiol.65, 445–454 (1969).
Article Google Scholar - Hengstenberg, R.: Das Augenmuskelsystem der Stubenfliege_Musca Domestica_. 1) Analyse der “clock spikes” und ihrer Quellen. Kybernetik9, 56–77 (1971).
Article PubMed CAS Google Scholar - Hertweck, H.: Anatomie und Variabilität des Nervensystems und der Sinnesorgane von_Drosophila Melanogaster_ (Meigen). Z. wiss. Zool.139, 559–663 (1931).
Google Scholar - Homann, H.: Der Vertikalilluminator als Augenspiegel bei kleinen Augen. Biol. Zbl.44, 582–592 (1924).
Google Scholar - Horridge, G. A.: Pigment movement and the crystalline threads of the firefly eye. Nature (Lond.)218, 778–779 (1968).
Article CAS Google Scholar - Kirschfeld, K.: Das anatomische und das physiologische Sehfeld der Ommatidien im Komplexauge von_Musca_. Kybernetik2, 249–257 (1965).
Article PubMed CAS Google Scholar - —: Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von_Musca_. Exp. Brain Res.3, 248–270 (1967).
Article PubMed CAS Google Scholar - —, Franceschini, N.: Optische Eigenschaften der Ommatidien im Komplexauge von_Musca_. Kybernetik5, 47–52 (1968).
Article PubMed CAS Google Scholar - —— Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von_Musca_. Kybernetik6, 13–22 (1969).
Article PubMed CAS Google Scholar - Kuiper, J. W.: The optics of the compound eye. Symp. Soc. exp. Biol.16, 58–71 (1962).
Google Scholar - Kunze, P.: Histologische Untersuchungen zum Bau des Auges von_Ocypode cursor_ (Brachyura). Z. Zellforsch.82, 466–478 (1967).
Article PubMed CAS Google Scholar - —: Eye glow in the moth and superposition theory. Nature (Lond.)223, 1172–1174 (1969).
Article Google Scholar - -:Verhaltensphysiologische und optische Experimente zur Superpositionstheorie der Bildentstehung in Komplexaugen. Verh. Zool. Ges. in Köln (1970).
- Leydig, F.: Zum feineren Bau der Arthropoden. Müller's Arch. Physiol., S. 431 (1855).
- Lüdtke, H.: Retinomotorik und Adaptationsvorgänge im Auge des Rückenschwimmers (Notonecta glauca, L.). Z. vergl. Physiol.35, 129–152 (1953).
Article Google Scholar - Miller, W. H., Bernard, G. D.: Butterfly glow. J. Ultrastruct. Res.14, 286–294 (1968).
Article Google Scholar - ——, Allen, J. J.: The optics of insect compound eyes. Science162, 760–767 (1968).
Article PubMed CAS Google Scholar - Power, M. E.: The brain of_Drosophila melanogaster_. J. Morph.72, 517–559 (1943).
Article Google Scholar - Scholes, J.: The electrical response of the retinal receptors and the lamina in the visual system of the fly_Musca_. Kybernetik6, 149–162 (1969)
Article PubMed CAS Google Scholar - Seitz, G.: Der Strahlengang im Appositionsauge von_Calliphora erythrocephala_ (Meig.). Z. vergl. Physiol.59, 205–231 (1968).
Google Scholar - Serres (Marquis de): Über die Augen der Insekten (traduction en Allemand de J. F. Dieffenbach). Theod. Christ. Friedr. Enslin (1826).
- Strausfeld, N. J.: Golgi studies on insects. Part II: the optic lobes of Diptera. Phil. Trans. B258, 135–223 (1970).
Article CAS Google Scholar - Trujillo-Cenoz, O., Melamed, J.: Compound eye of dipterans: anatomical basis for integration. An electron microscopy study. J. Ultrastruct. Res.16, 395–398 (1966).
Article PubMed CAS Google Scholar - Waddington, C. H., Perry, M. M.: The ultrastruct. of the developing eye of_Drosophila_. Proc. Roy. Soc. B153, 155–178 (1960).
Article Google Scholar - Yagi, N., Koyama, N.: The compound eye of Lepidoptera. Tokyo: Shinkyo Press 1963.
Google Scholar
Author information
Authors and Affiliations
- Max-Planck-Institut für biologische Kybernetik, Tübingen
N. Franceschini & K. Kirschfeld
Authors
- N. Franceschini
You can also search for this author inPubMed Google Scholar - K. Kirschfeld
You can also search for this author inPubMed Google Scholar
Additional information
Partie d'une thèse de doctorat d'Etat es Sciences physiques de l'Université de Grenoble (1971), enregistrée au C.N.R.S. (Paris) sous le N∘ A. 0. 3802.
Rights and permissions
About this article
Cite this article
Franceschini, N., Kirschfeld, K. Les phénomènes de pseudopupille dans l'œil composé de_Drosophila_ .Kybernetik 9, 159–182 (1971). https://doi.org/10.1007/BF02215177
- Received: 29 January 1971
- Published: 29 July 2013
- Issue Date: November 1971
- DOI: https://doi.org/10.1007/BF02215177