Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescencein situ hybridization (FISH) (original) (raw)
Abstract
Fluorescence_in situ_ hybridization (FISH) is an increasingly powerful tool with a variety of applications in both basic and applied research. With excellent genetic, cytogenetic and molecular maps available, the tomato genome provides a good model to benefit from the full potential of FISH. Tomato chromosomes at mitotic metaphase are small and not particularly suitable for high-resolution FISH. In contrast, chromosomes at meiotic pachytene are about 15 times longer, and easier to identify by their differences in chromosome arm lengths and chromomere pattern. We have developed a technique for preparing chromosomal spreads of young pollen mother cells at midprophase I which is suitable for FISH. In a first series of experiments, the hybridization patterns of three classes of repetitive DNA sequences were studied in single and multicolour FISH.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime Subscribe now
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
Similar content being viewed by others
References
- Albini SM, Schwarzacher T (1992)In situ localization of two repetitive DNA sequences to surface-spread pachytene chromosomes of rye.Genome 35: 551–559.
Google Scholar - Ganal MW, Lapitan NLV, Tanksley SD (1988) A molecular and cytogenetic survey of major repeated DNA sequences in tomato (Lycopersicon esculentum)Mol Gen Genet 213: 262–268.
Google Scholar - Heppell-Parton AC, Albertson DG, Fishpool R, Rabbitts PH (1994) Multicolour fluorescence_in situ_ hybridization to order small, single copy probes on metaphase chromosomes.Cytogenet Cell Genet 66: 42–47.
Google Scholar - Heslop-Harrison JS (1991) The molecular cytogenetics of plants.J Cell Sci 100: 15–21.
Google Scholar - Inazawa J, Ariyama T, Tokino T et al. (1994) High resolution ordering of DNA markers by multicolour fluorescent_in situ_ hybridization of prophase chromosomes.Cytogenet Cell Genet 65: 130–135.
Google Scholar - Jacobsen E, de Jong JH, Kamstra SA, van den Berg PMMM, Ramanna MS (1995) Genomic_in situ_ hybridization (GISH) and RFLP analysis for the identification of alien chromosomes in the backcross progeny of potato (+) tomato fusion hybrids.Heredity 74: 250–257.
Google Scholar - Jiang JM, Gill BS (1994) Nonisotopic_in situ_ hybridization and plant genome mapping: the first 10 years.Genome 37: 717–725.
Google Scholar - Joos S, Fink TM, Ratsch A, Lichter P (1994) Mapping and chromosome analysis: the potential of fluorescence_in situ_ hybridization.J Biotechnol 35: 135–153.
Google Scholar - Khush GS, Rick CM (1968) Cytogenetic analysis of the tomato genome by means of induced deficiencies.Chromosoma 23: 452–484.
Google Scholar - Lapitan NLV, Ganal MW, Tanksley SD (1989) Somatic chromosome karyotype of tomato based on_in situ_ hybridization of the TGR1 satellite repeat.Genome 32: 992–998.
Google Scholar - Leitch IJ, Leitch AR, Heslop-Harrison JS (1991) Physical mapping of plant DNA sequences by simultaneous_in situ_ hybridization of two differently labelled fluorescent probes.Genome 34: 329–333.
Google Scholar - Lichter P, Tang CC, Call K, Hermanson G, Evans GA, Housman D, Ward DC (1990) High resolution mapping of human chromosome 11 by_in situ_ hybridization with cosmid clones.Science 247: 64–69.
Google Scholar - Maluszynska J, Heslop-Harrison JS (1991) Localization of tandemly repeated DNA sequences in_Arabidopsis thaliana_.Plant J 1: 159–166.
Google Scholar - Marrone BL, Campbell EW, Anzick SL et al. (1994) Mapping of low-frequency chimeric yeast artificial chromosome libraries from human chromosomes 16 and 21 by fluorescence_in situ_ hybridization and quantitative image analysis.Genomics 21: 202–207.
Google Scholar - Moir DT, Dorman TS, Day JC et al. (1994) Toward a physical map of human chromosome 10: isolation of 183 YACs representing 80 loci and regional assignment of 94 YACs by fluorescence_in situ_ hybridization.Genomics 22: 1–12.
Google Scholar - Mukai Y, Friebe B, Hatchett JH, Yamamoto M, Gill BS (1993) Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly.Chromosoma 102: 88–95.
Google Scholar - Muleris M, Apiou A, Olschwang S, Thomas G Dutrillaux B (1994) Mapping of 18 probes on human chromosome 18 using single and double colour FISH.Cytogenet Cell Genet 65: 82–85.
Google Scholar - Parokonny AS, Kenton AY, Gleba YY, Bennett MD (1992) Genome reorganization in_Nicotiana_ asymmetric somatic hybrids analysed by_in situ_ hybridization.Plant J 2: 863–874.
Google Scholar - Ramanna MS, Prakken R (1967) Structure of and homology between pachytene and somatic metaphase chromosomes of the tomato.Genetica 38: 115–133.
Google Scholar - Schwarzacher T, Anamthawat-Jonsson K, Harrison GE et al., (1992a) Genomic_in situ_ hybridization to identify alien chromosomes and chromosome segments in wheat.Theor Appl Genet 84: 778–786.
Google Scholar - Schwarzacher T, Heslop-Harrison JS, Anamthawat-Jonsson K, Finch RA, Bennett MD (1992b) Parental genome separation in reconstructions of somatic and premeiotic metaphase of_Hordeum vulgare x H. bulbosum_.J Cell Sci 101: 13–24.
Google Scholar - Selleri L, Eubanks JH, Giovannini M et al., (1992) Detection and characterization of chimeric yeast artificial chromosome clones by fluorescent_in situ_ suppression hybridization.Genomics 14: 536–541.
Google Scholar - Tanksley SD, Ganal MW, Prince JP et al. (1992) High density molecular linkage maps of the tomato and potato genomes.Genetics 132: 1141–1160.
Google Scholar - Van Blokland R, Van der Geest N, Mol JNM, Kooter JM (1994) Transgene-mediated suppression of chalcone synthase expression in_Petunia hybrida_ results from an increase in RNA turnover.Plant J 6: 861–877.
Google Scholar - Weide R, van Wordragen MF, Lankhorst RK et al. (1993) Integration of the classical and molecular linkage maps of tomato chromosome 6.Genetics 135: 1175–1186.
Google Scholar - Wiegant J, Ried T, Nederlof P, van der Ploeg M, Tanke HJ, Raap AK (1991)In situ hybridization with fluoresceinated DNA.Nucleic Acids Res 19: 3237–3241.
Google Scholar - Wolters AMA, Schoenmarkers HCH, van der Meulen-Muisers JJM et al. (1991) Limited DNA elimination from the irradiated potato parent in fusion products of albino_Lycopersicon esculentum_ and_Solanum tuberosum_.Theor Appl Genet 83: 225–232.
Google Scholar - Wolters AMA, Schoenmarkers HCH, Kamstra S et al. (1994) Mitotic and meiotic irregularities in somatic hybrids of_Lycopersicon esculentum_ and_Solanum tuberosum_.Genome 37: 726–735.
Google Scholar - Van Wordragen MF, Weide R, Liharska T et al. (1994) Genetic and molecular organization of the short arm and pericentromeric region of tomato chromosome 6.Euphytica 79: 169–174.
Google Scholar - Xu J, Earle ED (1994) Direct and sensitive fluorescence_in situ_ hybridization of 45s rDNA on tomato chromosomes.Genome 37: 1062–1065.
Google Scholar - Zabel P, Meyer D, van de Stolpe O_et al._ (1985) Towards the construction of artificial chromosomes for tomato. In: van Vloten-Doting L, Groot GSP, Hall TC, eds.Molecular Form and Function of the Plant Genome, NATO ASI series A,Life Sciences, Vol. 83, pp 609–624.
Author information
Authors and Affiliations
- Department of Molecular Biology, Wageningen Agricultural University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands
Xiao-Bo Zhong & Pim Zabel - Department of Genetics, Wageningen Agricultural University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands
J. Hans de Jong
Authors
- Xiao-Bo Zhong
You can also search for this author inPubMed Google Scholar - J. Hans de Jong
You can also search for this author inPubMed Google Scholar - Pim Zabel
You can also search for this author inPubMed Google Scholar
Additional information
accepted for publication by J. S. (Pat) Heslop-Harrison
Rights and permissions
About this article
Cite this article
Zhong, XB., de Jong, J.H. & Zabel, P. Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence_in situ_ hybridization (FISH).Chromosome Res 4, 24–28 (1996). https://doi.org/10.1007/BF02254940
- Received: 22 May 1995
- Revised: 24 July 1995
- Accepted: 24 July 1995
- Issue Date: January 1996
- DOI: https://doi.org/10.1007/BF02254940