A composite model for establishing the microtubule arrays of the neuron (original) (raw)
Peters A., Palay S. L., and de Webster H. (1974)The Fine structure of the Nervous System. Saunders, Philadelphia, PA. Google Scholar
Lasek R. J. and Black M. M. (1988)Intrinsic Determinants of Neuronal Form and Function. Liss, New York. Google Scholar
Banker G. and Goslin K. (1991)Culturing Nerve Cells. MIT Press, Cambridge, MA. Google Scholar
Pannese E. (1994)Neurocytology: Fine Structure of Neurons, Nerve Processes, and Neuroglial Cells. Thieme, New York. Google Scholar
Binder L. I., Frankfurter A., and Rebhun L. I. (1985) The distribution of tau in the mammalian nervous system.J. Cell Biol.101, 1371–1378. ArticlePubMedCAS Google Scholar
Matus A. (1994) MAP2 in_Microtubules_ (Hyams J. S. and Lloyd C. W., eds.), Wiley-Liss, New York, pp. 155–166. Google Scholar
Caceres A., Banker G., Steward O., Binder L., and Payne M. (1984) MAP2 is localized to the dendrites of hippocampal neurons which develop in culture_Dev. Brain Res._ 13, 314–318. Article Google Scholar
Kosik K. S. and Finch E. A. (1987) MAP2 and tau segregate into dendritic and axonal domains after the elaboration of morphologically distinct neurites.J. Neurosci.7, 3142–3153. PubMedCAS Google Scholar
Brown P. A. and Berlin R. D. (1988) Factors that determine spacing between microtubules: their possible role in cytoarchitecture, in_Intrinsic Determinants of Neuronal Form and Function_ (Lasek R. J. and Black M. M., eds.), Liss, New York, pp. 307–321. Google Scholar
Black M. M. (1987) Comparison of the effects of microtubule-associated protein 2 and tau on the packing density of_in vitro_ assembled microtubules.Proc. Natl. Acad. Sci. USA84, 7783–7787. ArticlePubMedCAS Google Scholar
Chen J., Kanai Y., Cowan N. J., and Hirokawa N. (1992) Projection domains of MAP-2 and tau determine spacings between microtubules in dendrites and axons_Nature_ 360, 674–677. ArticlePubMedCAS Google Scholar
Baas P. W., Pienkowski T. P., and Kosik K. S. (1991) Processes induced by tau expression in Sf9 cells have an axon-like microtubule organization.J. Cell Biol.115, 1333–1344. ArticlePubMedCAS Google Scholar
LeClerc N., Baas P. W., Garner C. G., and Kosik K. S. (1995) Juvenile and mature MAP2 isoforms induce disticct cellular morphologies.Mol. Biol. Cell3, 435–442. Google Scholar
Bergen L. and Borisy G. G. (1980) Head-to-tail polymerization of microtubules_in vivo_. Electron microscope analysis of seeded assembly.J. Cell Biol.84, 141–150. ArticlePubMedCAS Google Scholar
Binder L. I., Dentler W., and Rosenbaum J. L. (1975) Assembly of chick brain tubulin onto flagellar microtubules from_Chalamydomonas_ and sea urchin sperm.Proc. Natl. Acad. Sci. USA72, 1122–1126. ArticlePubMedCAS Google Scholar
Allan V. J., Vale R. D., and Navone F. (1991) Microtubule-based organelle transport in neurons, in_The Neuronal Cytoskeleton_ (Burgoyne R. D., ed.) Wiley-Liss, New York, pp. 257–282. Google Scholar
Collins C. A. (1994) Dynein-based organelle transport, in_Microtubules_ (Hyams J. S. and Lloyd C. W., eds.), Wiley-Liss, New York, pp. 367–380. Google Scholar
Black M. M. and Baas P. W. (1989) The basis of polarity in neuron.Trends Neurosci.12, 211–214. ArticlePubMedCAS Google Scholar
Heidemann S. R., Landers J. M., and Hamborg M. A. (1981) Polarity orientation of axonal microtubules.J. Cell Biol.91, 661–665. ArticlePubMedCAS Google Scholar
Burton P. R. and Paige J. L. (1981) Polarity of axoplasmic microtubules in the olfactory nerve of the frog.Proc. Natl. Acad. Sci. USA78, 3269–3273. ArticlePubMedCAS Google Scholar
Baas P. W., White L. A., and Heidemann S. R. (1987) Microtubule polarity reversal accompanies regrowth of amputated neurites.Proc. Natl. Acad. Sci. USA84, 5272–5276. ArticlePubMedCAS Google Scholar
Baas P. W., Deitch J. S., Black M. M., and Banker G. A. (1988) Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite.Proc. Natl. Acad. Sci. USA85, 8335–8339. ArticlePubMedCAS Google Scholar
Baas P. W., Black M. M., and Banker G. A. (1989). Changes in microtubule polarity orientation during the development of hippocampal neurons in culture_J. Cell Biol._ 109, 3085–3094. ArticlePubMedCAS Google Scholar
Baas P. W., Slaughter T., Brown A., and Black M. M. (1991) Microtubule dynamics in axons and dendrites_J. Neurosci. Res._ 30, 134–153. ArticlePubMedCAS Google Scholar
Burton P. R. (1988) Dendrites of mitral cell neurons contain microtubules of opposite polarity.Brain Res.473, 107–115. ArticlePubMedCAS Google Scholar
Lasek R. J. (1988) Studying the intrinsic determinants of neuronal form and function, in_Intrinsic Determinants of Neuronal Form and Function_ (Lasek R. J. and Black M. M., eds.), Liss, New York, pp. 1–58. Google Scholar
Black M. M. and Lasek R. J. (1980) Slow components of axonal transport: two cytoskeletal networks_J. Cell Biol._ 86, 616–623. ArticlePubMedCAS Google Scholar
Brady S. T. and Lasek R. J. (1982) Axonal transport: a cell biological method for studying proteins that associate with the cytoskeleton.Meth. Cell Biol.25, 365–398. CAS Google Scholar
Hoffman P. and Lasek R. J. (1975) The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons.J. Cell Biol.66, 351–366. ArticlePubMedCAS Google Scholar
Lasek R. J. (1986) Polymer sliding in axons.J. Cell Sci. Suppl.5, 161–179. PubMedCAS Google Scholar
Lasek R. J. (1982) Translocation of the neuronal cytoskeleton and axonal locomotion.Philos. Trans. R. Soc. Lond. Biol. Sci.299, 313–327. ArticleCAS Google Scholar
Bamburg J. R., Bray D., and Chapman K. (1986) Assembly of microtubules at the tip of growing axons.Nature (Lond.)321, 788–790. ArticleCAS Google Scholar
Keith C. (1987) Slow transport of tubulin in the neurites of differentiated PC12 cells.Science (Washington, DC)235, 337–339. ArticleCAS Google Scholar
Lim S.-S., Sammak P. J., and Borisy G. G. (1989) Progressive and spatially differentiated stability of microtubules in developing neuronal cells_J. Cell Biol._ 109, 253–264. ArticlePubMedCAS Google Scholar
Okabe S. and Hirokawa N. (1989) Turnover of fluorescently labeled tubulin and actin in the axon.Nature (Lond.)343, 479–482. Article Google Scholar
Lim S.-S., Edson K. J., Letourneau P. C., and Borisy G. G. (1990) A test of microtubule translocation during neurite elongation.J. Cell Biol.111, 123–135. ArticlePubMedCAS Google Scholar
Reinsch S. S., Mitchison T. J., and Kirschner M. W. (1991) Microtubule polymer assembly and transport during axonal elongation_J. Cell Biol._ 115, 365–380. ArticlePubMedCAS Google Scholar
Okabe S. and Hirokawa N. (1992) Differential behavior of photoactivated microtubules in growing axons of mouse and frog neurons_J. Cell Biol._ 117, 105–120. ArticlePubMedCAS Google Scholar
Okabe S. and Hirokawa N. (1993) Do photobleached fluorescent microtubules move? Re-evaluation of fluorescence laser photobleaching both in vitro and in growing_Xenopus_ axon.J. Cell Biol.120, 1177–1186. ArticlePubMedCAS Google Scholar
Sabry J., O'Connor T. P., and Kirschner M. W. (1995) Axonal transport of tubulin in Ti1 pioneer neurons in situ.Neuron14, 1247–1256. ArticlePubMedCAS Google Scholar
Takeda S., Funakoshi T., and Hirokawa N. (1995) Tubulin dynamics in neuronal axons of living zebrafish embryos.Neuron14, 1257–1264. ArticlePubMedCAS Google Scholar
Mikhailov A. V. and Gunderson G. G. (1995) Centripetal transport of microtubules in motile cells.Cell Motil. Cytoskel.32, 173–186. ArticleCAS Google Scholar
Vigers G. P., Coue M., and McIntosh I. R. (1988) Fluorescent microtubules break up under illumination.J. Cell Biol.107, 1011–1024. ArticlePubMedCAS Google Scholar
Keith C. H. and Farmer M. (1993) Microtubule behavior in PC12 neurites: variable results obtained with photobleach technology.Cell Motil. Cytoskel.25, 345–357. ArticleCAS Google Scholar
Brinkley B. R. (1985) Microtubule organizing centers.Ann. Rev. Cell Biol.1, 145–172. PubMedCAS Google Scholar
Kellog D. R., Moritz M., and Alberts B. M. (1994) The centrosome and cellular organization.Ann. Rev. Biochem.63, 639–674. Article Google Scholar
Evans L., Mitchison T., and Kirschner M. W. (1985) Influence of the centrosome on the structure of nucleated microtubules.J. Cell Biol.100, 1185–1191. ArticlePubMedCAS Google Scholar
Lyser K. M. (1968) An electron microscopic study of centrioles of differentiating neuroblasts.J. Embryol. Exp. Morphol.20, 343–354. PubMedCAS Google Scholar
Sharp G. A., Weber K., and Osborn M. (1982) Centriole number and process formation in established neuroblastoma cells and primary dorsal root ganglion neurones.Eur. J. Cell Biol.29, 97–103. PubMedCAS Google Scholar
Bray D. and Bunge M. B. (1981) Serial analysis of microtubules of cultured rat sensory neurons.J. Neurocytol.10, 589–605. ArticlePubMedCAS Google Scholar
Sasaki S., Stevens J. K., and Bodick N. (1983) Serial reconstruction of microtubule arrays within dendrites of the cat retinal ganglion cell: the cytoskeleton of a vertebrate dendrite.Brain Res.259, 193–206. ArticlePubMedCAS Google Scholar
De Brabander M., Geuens G., Nuydens R., Willebrands R., and De Mey J. (1977) The effects of R 17934, a new antimicrotubular substance, on the ultrastructure of neoplastic cells in vivo.Eur. J. Cancer13, 511–528. PubMed Google Scholar
Baas P. W. and Ahmad F. J. (1992) The plus ends of stable microtubules are the exclusive nucleating structures for microtubules in the axon.J. Cell Biol.116, 1231–1241. ArticlePubMedCAS Google Scholar
Baas P. W. and Heidemann S. R. (1986) Microtubule reassembly from nucleating fragments during the regrowth of amputated neurites.J. Cell Biol.103, 917–927. ArticlePubMedCAS Google Scholar
Baas P. W. and Joshi H. C. (1992) Gamma-tubulin distribution in the neuron: implications for the origins of neuritic microtubules.J. Cell Biol.119, 171–178. ArticlePubMedCAS Google Scholar
Oakely B. R. (1994) Gamma-tubulin, in_Microtubules_ (Hyams J. S. and Lloyd C. W. eds.), Wiley-Liss, New York, pp. 33–45. Google Scholar
Yu W., Centonze V. E., Ahmad F. J., and Baas P. W. (1993) Microtubule nucleation and release from the neuronal centrosome.J. Cell Biol.122, 349–359. ArticlePubMedCAS Google Scholar
Ahmad F. J., Joshi H. C., Centonze V. E., and Baas P. W. (1994) Inhibition of microtubule-nucleation at the neuronal centrosome compromises axon growth.Neuron12, 271–280. ArticlePubMedCAS Google Scholar
Joshi H. C., Palacios M. J., McNamara L., and Cleveland D. W. (1992) Gamma-tubulin is a centrosomal protein required for cell cycle-dependent microtubule-nucleation.Nature (Lond.)235, 337–339. Google Scholar
Baas P. W. and Ahmad F. J. (1993) The transport properties of axonal microtubules establish their polarity orientation.J. Cell Biol.120, 1427–1437. ArticlePubMedCAS Google Scholar
Ahmad F. J. and Baas P. W. (1995) Microtubules released from the neuronal centrosome are transported into the axon.J. Cell Sci.108, 2761–2769. PubMedCAS Google Scholar
Sharp D. J., Yu W., and Baas P. W. (1995) Transport of dendritic microtubules establishes their nonuniform polarity orientation.J. Cell Biol.130, 93–104. ArticlePubMedCAS Google Scholar
Joshi H. C. and Baas P. W. (1993) A new perspective on microtubules and axon growth.J. Cell Biol.121, 1191–1196. ArticlePubMedCAS Google Scholar
Yu W. and Baas P. W. (1994) Changes in microtubule number and length during axon differentiation.J. Neurosci.14, 2818–2829. PubMedCAS Google Scholar
Wordemann L. and Mitchison T. J. (1994) Dynamics of microtubule assembly_in vivo_, in_Microtubules_ (Hyams J. S. and Lloyd C. W., eds.), Wiley-Liss, New York, pp. 287–301. Google Scholar
Yu W., and Baas P. W. (1995) The growth of the axon is not dependent upon the net assembly of microtubules at its distal tip.J. Neurosci.15, 6827–6833. PubMedCAS Google Scholar
Yu W., Ahmad F. J., and Baas P. W. (1994) Microtubule fragmentation and partitioning in the axon during collateral branch formation.J. Neurosci.14, 5872–5884. PubMedCAS Google Scholar
Sanders M. A. and Salisbury J. L. (1989) Centrin mediated microtubule severing during flagellar excision in_Chlamydomonas reinhardii_.J. Cell Biol.108, 1751–1760. ArticlePubMedCAS Google Scholar
Baas P. W., Pienkowski T. P., Cimbalnik K. A., Toyama T., Bakalis S., Ahmad F. J., and Kosik K. S. (1994) Tau confers drug stability but not cold stability to microtubules in living cells.J. Cell Sci.107, 135–143. PubMedCAS Google Scholar
Knops J., Kosik K. S., Lee G., Pardee J. D., Cohen-Gould L., and McConlogue L. (1991) Overexpression of tau in a nonneuronal cell induces long cellular processes.J. Cell Biol.114, 725–733. ArticlePubMedCAS Google Scholar
Edson K., Weisshaar N., and Matus A. (1993) Actin depolymerization induces process formation in MAP2-transfected non-neuronal cells.Development117, 689–700. PubMedCAS Google Scholar
Harada A., Oguchi K., Okabe S., Kuno J., Terada S., Ohshima T., Sato-Yoshitake R., Takei Y., Noda T., and Hirokawa N. (1994) Altered microtubule organization in small-calibre axons of mice lacking tau protein.Nature (Lond.)343, 461–463. Google Scholar
Terasaki M., Schmidek A., Galbraith J. A., Gallant, P. E., and Reese T. S. (1995) Transport of cytoskeletal elements in the squid giant axon.Proc. Natl. Acad. Sci. USA92, 11,500–11,503. ArticleCAS Google Scholar
Yu W., Schwei M. J., and Baas P. W. (1996) Microtubule transport and assembly during axon growth.J. Cell Biol.133, 151–157. ArticlePubMedCAS Google Scholar