Hypothermia blunts acetylcholine increase in CSF of traumatically brain injured rats (original) (raw)
References
Boksa P., Mykita S., and Collier B. (1988) Arachidonic acid inhibits choline uptake and depletes acetylcholine in rat cerebral cortical synaptosomes.J. Neurochem.50, 1309–1318. ArticlePubMedCAS Google Scholar
Busto R., Dietrich W., Globus M. Y. T., Valdes I., Scheinberg P., and Ginsberg M. D. (1987) Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury.J. Cereb. Blood Flow Metab.7, 729–738. PubMedCAS Google Scholar
Busto R., Globus M. Y. T., Dietrich W. D., Martinez E., Valdes I., and Ginsberg M. D. (1989) Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain.Stroke20, 904–910. PubMedCAS Google Scholar
Chou C-L., Lyeth B. G., Jenkins L. W., Hayes R. L., and Povlishock J. T. (1991) Regional cerebral blood flow changes after traumatic brain injury in the rat.Soc. Neurosci. Abstracts.17, 722. Google Scholar
Clifton G. L., Taft W. C., Blair R. E., Choi S. C., and DeLorenzo R. J. (1989) Conditions for pharmacologic evaluation in the gerbil model of forebrain ischemia_Stroke_ 20, 1545–1552. PubMedCAS Google Scholar
Clifton G. L., Jiang J. Y., Lyeth B. G., Jenkins L. W., Hamm R. J., and Hayes R. L. (1991) Marked protection by moderate hypothermia after experimental traumatic brain injury.J. Cereb. Blood Flow Metab.11, 114–121. PubMedCAS Google Scholar
Delahunty T. M., Jenkins L. W., Lyeth B. G., Phillips L. L., Hamm R. J., and Franson R. (1992) Mild traumatic brain injury enhances muscarinic receptor-linked inositol phosphate production in rat hippocampus.Brain Res.594, 307–310. ArticlePubMedCAS Google Scholar
Dixon C. E., Lyeth B. G., Povlishock J. T., Findling R. L., Hamm R. J., Marmarou A., Young H. F., and Hayes R. L. (1987) A fluid percussion model of experimental brain injury in the rat.J. Neurosurg.67, 110–119. ArticlePubMedCAS Google Scholar
Ellis E. F., Chao J., and Heizer M. L. (1989) Brain kininogen following experimental brain injury: evidence for a secondary event.J. Neurosurg.71, 437–442. ArticlePubMedCAS Google Scholar
Enters E. K., Pascua, J. R., McDowell, K. P., Kapasi, M. Z., Povlishock, J. T., and Robinson, S. E. (1992) Blockade of acute hypertensive response does not prevent changes in behavior or in CSF acetylcholine (CSF) content following traumatic brain injury (TBI).Brain Res.576, 271–276. ArticlePubMedCAS Google Scholar
Faden A. I., Demediuk P., Panter S. S., and Vink R. (1989) The role of excitatory amino acid and NMDA receptors in traumatic brain injury.Science244, 798–800. ArticlePubMedCAS Google Scholar
Gorman L. K., Fu K., Hovda D. A., Becker D. P., and Katayama Y. (1989) Analysis of acetylcholine release following concussive brain injury in the rat.J. Neurotrauma6, 203. Google Scholar
Haber B. and Grossman R. G. (1980) Acetylcholine metabolism in intracranial and lumbar cerebrospinal fluid and in blood, in_Neurobiology and Cerebrospinal Fluid_ (Wood, J. H., ed.), pp. 345–350, Plenum, New York. Google Scholar
Hayes R. L., Jenkins L. W., Lyeth B. G., Balster R. L., Robinson S. E., Miller L. P., Clifton G. L., and Young H. F. (1988) Pretreatment with phencyclidine, an_N_-methyl-d-aspartate receptor antagonist, attenuates long-term behavorial deficits in the rat produced by traumatic brain injury.J. Neurotrauma5, 287–302. Google Scholar
Jiang J. Y., Lyeth B. G., Clifton G. L., Jenkins L. W., Hamm R. J., and Hayes R. L. (1991) Relationship between body and brain temperature in traumatically brain injured rodents.J. Neurosurg.74, 492–496. ArticlePubMedCAS Google Scholar
Jiang J. Y., Lyeth B. G., Kapasi M., Jenkins L. W., and Povlishock J. (1992) Moderate hypothermia reduces blood-brain barrier disruption following traumatic brain injury in the rat.Acta Neuropathol.84, 495–500. ArticlePubMedCAS Google Scholar
Jope R. S., and Gu X. (1991) Seizures increase acetylcholine and choline concentrations in rat brain regions.Neurochem. Res.16, 1219–1226. ArticlePubMedCAS Google Scholar
Kakihana M., Yamazaki N., and Nagaoka A. (1989) Effects of idebenone on the levels of acetylcholine, choline, free fatty acids, and metabolites in the brains of rats with cerebral ischemia.Arch Gerontol. Geriatr.9, 247–256. Article Google Scholar
Katayama Y., Becker D. P., Tamura T., and Hovda D. A. (1990) Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury.J. Neurosug.73, 884–900. Google Scholar
Löffelholz K. (1989) Receptor regulation of choline phospholipid hydrolysis: A novel source of diacylglycerol and phosphatidic acid.Biochem. Pharmacol.38 1543–1549. ArticlePubMed Google Scholar
Lyeth, B. G., Dixon C. E., Hamm R. J., Jenkins L. W., Young H. F., Stonnington H. H., and Hayes R. L. (1988a) Effects of anticholinergic treatment on transient behavorial suppression and physiological responses following concussive brain injury to the rat.Brain Res.448, 88–97. ArticlePubMedCAS Google Scholar
Lyeth B. G., Dixon C. E., Jenkins L. W., Hamm R. J., Alberico A., Young H. F., Stonnington H. H., and Hayes R. L. (1988b) Effects of scopolamine treatment on long-term behavorial deficits following concussive brain injury to the rat.Brain Res.452, 39–48. ArticlePubMedCAS Google Scholar
Lyeth B. G., Ray M., Hamm R. J., Schnabel J., Saady J. J., Poklis A., Jenkins L. W., Gudeman S. K., and Hayes R. L. (1992) Post-injury scopolamine administration in experimental traumatic brain injury.Brain Res.569, 281–286. ArticlePubMedCAS Google Scholar
Macedo T. M. and Gomez M. V. (1983) the effect of scorpion venom, tityustoxin, on high-affinity choline uptake in rat brain cortical slices.Neuropharmacology22 233–237. ArticlePubMedCAS Google Scholar
McIntosh, T. K., Vink R., Soares H., Hayes R. L., and Simon R. (1989) Effects of_N_-methyl-d-aspartate receptor blocker MK-801 on neurologic function after experimental brain injury.J. Neurotrauma6, 247–259. ArticlePubMedCAS Google Scholar
Povlishock J. T. and Lyeth B. G. (1989) Traumatically induced blood-brain barrier disruption: A conduit for the passage of circulating excitatory neurotransmitters.Soc. Neurosci. Abstracts15, 1113. Google Scholar
Robinson S. E., Rice M. A., and Hambrecht K. L. (1986) Effect of intrastriatal injection of diisopropylfluorophosphate on acetylcholine, dopamine, and serotonin metabolism.J. Neurochem.46, 1632–1638. ArticlePubMedCAS Google Scholar
Robinson S. E., Martin R. M., Davis T. R., Gyenes C. A., Ryland J. E., and Enters E. K. (1990a) The effect of acetylcholine depletion on behavior following traumatic brain injury.Brain Res.509, 41–46. ArticlePubMedCAS Google Scholar
Robinson S. E., Fox S. D., Posner M. G., Martin R. M., Davis T. R., Guo H., and Enters E. K. (1990b) The effect of M1 muscarinic blockade on behavior following traumatic brain injury in the rat.Brain Res.511, 141–148. ArticlePubMedCAS Google Scholar
Robinson S. E., Borrelli G. S., Ang J. L., Pascua J. R., McDowell K. P., and Enters E. K. (1991) Carbachol-stimulated inositol phosphate (IP) production following traumatic brain injury (TBI).Soc. Neurosci. Abstracts17, 721. Google Scholar
Scremin O. U and Jenden D. J. (1989) Effects of middle cerebral artery occlusion on cerebral cortex choline and acetylcholine in rats.Stroke20, 1524–1530. PubMedCAS Google Scholar
Tower D. B. and McEachern D. (1949) Acetylcholine and neuronal activity: I. Cholinesterase patterns and acetylcholine in the cerebrospinal fluids of patients with craniocerebral trauma.Can. J. Res.27, 105–119. PubMedCAS Google Scholar
Yamamura H. I. and Snyder S. H. (1973) High affinity transport of choline into synaptosomes of rat brain.J. Neurochem.21, 1355–1374. ArticlePubMedCAS Google Scholar