Dexamethasone effects on cortisol secretion in Alzheimer’s disease: Some clinical and hormonal features in suppressor and nonsuppressor patients (original) (raw)

References

  1. Raskind M.A., Peskind E., Rivard M.-F., Veith R., Barnes R. The dexamethasone suppression test and cortisol circadian rhythm in primary degenerative dementia. Am. J. Psychiatry 1982, 139: 1468–1471.
    CAS PubMed Google Scholar
  2. Skare S., Pew B., Dysken M. The dexamethasone suppression test in dementia: a review of the literature. J. Geriatr. Psychiatry Neurol. 1990, 3: 124–138.
    Article CAS PubMed Google Scholar
  3. Carroll B.J., Feinberg M., Greden J.F., Tarika J., Albala A.A., Haskett R.F., James N., Kronfold Z., Lohr N., Steinert M., deVigne J.P., Young E. A specific laboratory test for the diagnosis of melancholia. Standardization, validation and clinical utility. Arch. Gen. Psychiatry 1981, 38: 15–22.
    Article CAS PubMed Google Scholar
  4. Herbert J. Neurosteroids, brain damage, and mental illness. Exp. Gerontol. 1998, 33: 713–727.
    Article CAS PubMed Google Scholar
  5. Davous P., Roudier M., Piketty M.L., Abramowitz C., Lamour Y. Pharmacological modulation of cortisol secretion and dexamethasone suppression in Alzheimer’s disease. Biol. Psychiatry 1988, 23: 13–24.
    Article CAS PubMed Google Scholar
  6. Balldin J., Blennow K., Brane G., Gottfries C.G., Karlsson I., Regland B., Wallin A. Relationship between mental impairment and HPA axis activity in dementia disorders. Dementia 1994, 5: 252–256.
    CAS PubMed Google Scholar
  7. Magri F., Locatelli M., Balza G., Molla G., Cuzzoni G., Fioravanti M., Solerte S.B., Ferrari E. Changes in endocrine circadian rhythms as markers of physiological and pathological brain aging. Chronobiol. Intern. 1997, 14: 385–396.
    Article CAS Google Scholar
  8. Wilkinson C.W., Peskind E.R., Raskind M.A. Decreased hypothalamic-pituitary-adrenal axis sensitivity to cortisol feedback inhibition in human aging. Neuroendocrinology 1997, 65: 79–90.
    Article CAS PubMed Google Scholar
  9. Boscaro M., Paoletta A., Scarpa E., Barzon L., Fusaro P., Fallo F., Sonino N. Age-related changes in glucocorticoid fast feedback inhibition of adrenocorticotropin in man. J. Clin. Endocrinol. Metab. 1998, 83: 1380–1383.
    CAS PubMed Google Scholar
  10. Huizenga N.A.T.M., Koper J.W., DeLange P., Pols H.A.P., Stolk R.P., Grobbee D.E., De Jong F.H., Lamberts S.W.J. Interperson variability but intraperson stability of baseline plasma cortisol concentrations, and its relation to feedback sensitivity of the hypothalamuspituitary-adrenal axis to a low dose of dexamethasone in elderly individuals. J. Clin. Endocrinol. Metab. 1998, 83: 47–54.
    CAS PubMed Google Scholar
  11. De Kloet E.R., Van der Vies J., DeWied D. The site of suppressive action of dexamethasone on pituitary-adrenal activity. Endocrinology 1974, 94: 61–73.
    Article PubMed Google Scholar
  12. De Kloet E.R., Vreugdenhil E., Oitzl M.S., Joëls M. Brain corticosteroids receptor balance in health and disease. Endocr. Rev. 1998, 19: 269–301.
    PubMed Google Scholar
  13. Mc Ewen B.S. Stress and aging hippocampus. Front. Neuroendocrinol. 1999, 20: 49–70.
    Article Google Scholar
  14. Svec F., Lopez A. Antiglucocorticoid actions of dehydroepiandrosterone and low concentration in Alzheimer’s disease. Lancet 1989, i: 1335–1336.
    Article Google Scholar
  15. Behl C. Effects of glucocorticoids on oxidative stress-induced hippocampal cell death: implication for the pathogenesis of Alzheimer’s disease. Exp. Gerontol. 1998, 33: 689–696.
    Article CAS PubMed Google Scholar
  16. Kalimi M., Shafagoj Y., Loria R., Padgett D., Regelson W. Antiglucocorticoid effects of dehydroepiandrosterone (DHEA). Mol. Cell. Biochem. 1994, 131: 99–104.
    Article CAS PubMed Google Scholar
  17. Baulieu E.E., Robel P. Dehydroepiandrosterone and dehydroepiandrosterone sulfate as neuroactive neurosteroids. J. Endocrinol. 1996, 150: S221–S239.
    CAS PubMed Google Scholar
  18. Kimonides V.G., Khatibi N.H., Svendsen C.N., Sofroniew M.V., Herbert J. Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity. Proc. Natl. Acad. Sci. USA 1998, 95: 1852–1857.
    Article CAS PubMed PubMed Central Google Scholar
  19. Guazzo E.P., Kirkpatrick P.J., Goodyer I.M., Shiers H.M., Herbert J. Cortisol, dehydroepiandrosterone (DHEA), and DHEA sulfate in the cerebrospinal fluid of man: relation to blood levels and the effects of age. J. Clin. Endocrinol. Metab. 1996, 81: 3951–3960.
    CAS PubMed Google Scholar
  20. Sunderland T., Merril C.R., Harrington M.G., Lawlor B.A., Molchan S.E., Martinez R., Murphy D.R. Reduced plasma dehydroepiandrosterone concentrations in Alzheimer’s disease. Lancet 1989, ii: 570.
    Article Google Scholar
  21. Näsman B., Olsson T., Backstrom T., Eriksson S., Grankvist K., Viitanen M., Bucht G. Serum dehydroepiandrosterone sulfate in Alzheimer’s disease and multi-infarct dementia. Biol. Psychiatry 1991, 30: 684–690.
    Article PubMed Google Scholar
  22. Murialdo G., Nobili F., Rollero A., Gianelli M.V., Copello F., Rodriguez G., Polleri A. Hippocampal perfusion and pituitary-adrenal axis in Alzheimer’s disease. iNeuropsychobiology (in press).
  23. Torres-Aleman I. Insulin-like Growth Factors as mediators of functional plasticity in the adult brain. Horm. Metab. Res. 1999, 31: 114–119.
    Article CAS PubMed Google Scholar
  24. Hoffman A.R., Lieberman S.A., Butterfield G., Thompson J., Hintz R.L., Ceda G.P., Marcus R. Functional consequences of somatopause and its treatment. Endocr. Rev. 1997, 7: 73–76.
    Article CAS Google Scholar
  25. Connor B., Beilharz E.J., Williams C., Synk R., Gluckman P.D., Faull R.L.M., Dragunow M. Insulin-like growth Factor-I (IGF-I) immunoreactivity in the Alzheimer’s disease temporal cortex and hippocampus. Mol. Brain Res. 1997, 49: 283–290.
    Article CAS PubMed Google Scholar
  26. Morales A.J., Nolan J.J., Nelson J.C., Yen S.S.C. Effects of replacement dose of dehydroepiandrosterone in men and women of advancing age. J. Clin. Endocrinol. Metab. 1994, 78: 1360–1367.
    CAS PubMed Google Scholar
  27. Pfeilschifter J., Scheidt-Nave C., Leidig-Bruckner G., Woitge H.W., Blum W.F., Wüster C., Haack D., Ziegler R. Relationship between circulating Insulin-like Growth Factor components and sex hormones in a population-based sample of 50- to 80-year-old men and women. J. Clin. Endocrinol. Metab. 1996, 81: 2534–2540.
    CAS PubMed Google Scholar
  28. Casson P.R., Santoro N., Elkind-Hirsch K., Carson S.A., Hornsby P.J., Abraham G., Buster J.E. Postmenopausal dehydroepiandrosterone administration increases free insulin-like growth factor -I and decreases high-density lipoprotein: a six-month trial. Fertil. Steril. 1998, 70: 107–110.
    Article CAS PubMed Google Scholar
  29. Jones J., Clemmons D.R. Insulin-like growth factors and their binding proteins: biological actions. Endocr. Rev. 1995, 16: 3–34.
    CAS PubMed Google Scholar
  30. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E.M. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS/ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34: 939–944.
    Article CAS PubMed Google Scholar
  31. Folstein M.F., Folstein S.E., McHughes P.R. Mini Mental State: a practical method for grading the cognitive state of patients for clinicians. J. Psychiatry Res. 1975, 12: 189–198.
    Article CAS Google Scholar
  32. Reisberg B., Ferris S., De Leon M.J., Croock T. The global deterioration scale for assessment of primary degenerative dementia. Am. J. Psychiatry 1982, 139: 1136–1139.
    CAS PubMed Google Scholar
  33. Tsagarakis S., Grossman A. The hypothalamus-pituitary-adrenal axis in senescence. Front. Neuroendocrinol. 1999, 20: 70–91.
    Google Scholar
  34. Swanwick G.R.J., Kirby M., Bruce I., Buggy F., Coen R.F., Cakley D., Lawlor B.A. Hypothalamic-pituitary-adrenal axis dysfunction in Alzheimer’s disease: lack of association between longitudinal and cross-sectional findings. Am. J. Psychiatry 1998, 155: 286–289.
    CAS PubMed Google Scholar
  35. Sapolsky R.M., Plotsky P.M. Hypercortisolism and its possible neural bases. Biol. Psychiatry 1990, 27: 973.
    Article Google Scholar
  36. O’Brien J.T., Schweitzer I., Ames D., Tuckwell V., Mastwyk M. Cortisol suppression by dexamethasone in the healthy elderly: effect of age, dexamethasone levels, and cognitive function. Biol. Psychiatry 1994, 36: 389–394.
    Article PubMed Google Scholar
  37. Hatzinger M., Z’Brun A Hemmeter U., Seifritz E., Baumann F., Holsboer-Trachsler E., Heuser I. Hypothalamic-pituitary-adrenal system function in patients with Alzheimer’s disease. Neurobiol. Aging 1995, 16: 205–209.
    Article CAS PubMed Google Scholar
  38. Miller A.H., Sastri G., Speranza A.J. jr, Lawlor B.A., Mohs R.C., Ryan T.M., Gabriel S.M., Serby M., Schneider J., Davis K.L. Lack of association between cortisol hypersecretion and non suppression on the DST in patients with Alzheimer’s disease. Am. J. Psychiatry 1994, 151: 267–270.
    CAS PubMed Google Scholar
  39. Martignoni E., Petraglia F., Costa A., Bono G., Genazzani A.R., Nappi G. Dementia of the Alzheimer type and hypothalamus-pituitary-adrenal axis: changes in cerebrospinal fluid corticotropin releasing factor and plasma cortisol levels. Acta Neurol. Scand. 1990, 81: 452–456.
    Article CAS PubMed Google Scholar
  40. Waltman C., Blackman M.R., Chrousos G.P., Riemann C., Harman S.M. Spontaneous and glucocorticoid-inhibited cortisol secretion in healthy young and old men. J. Clin. Endocrinol. Metab. 1991, 73: 495–502.
    Article CAS PubMed Google Scholar
  41. Bornstein S.R., Chrousos G.P. Adrenocorticotropin (ACTH)- and non-ACTH-mediated regulation of the adrenal cortex: neural and immune inputs. J. Clin. Endocrinol. Metab. 1999, 84: 1729–1736.
    Article CAS PubMed Google Scholar
  42. Rollero A., Murialdo G., Fonzi S., Garrone S., Gianelli M.V., Gazzerro E., Barreca A., Polleri A. Relationship between cognitive function, growth hormone and Insulin-like Growth Factor-I plasma levels in aged subjects. Neuropsychobiology 1998, 38: 73–79.
    Article CAS PubMed Google Scholar
  43. Guan J., Williams C., Gunning M., Mallard C., Gluckman P. The effects of IGF-I treatment after hypoxic-ischemic brain injury in adult rats. J. Cereb. Blood Flow Metab. 1993, 13: 609–616.
    Article CAS PubMed Google Scholar
  44. Doré S., Kar S., Quirion R. Insulin-like Growth Factor-I protects and rescues hippocampal neurons against?-amyloid- and human amylin-induced toxicity. Proc. Natl. Acad. Sci. USA 1997, 94: 4772–4777.
    Article PubMed PubMed Central Google Scholar
  45. Lee P.D.K., Giudice L.C., Conover C.A., Powell D.R. Insulin-like growth factor binding protein-1: recent findings and new directions. Proc. Soc. Exp. Biol. Med. 1997, 216: 319–357.
    Article CAS PubMed Google Scholar
  46. Conover C.A., Clarkson J.T., Bale L.K. Effect of glucocorticoids on Insulin-like Growth Factor regulation of IGF-binding protein expression in fibroblasts. Endocrinology 1995, 136: 1403–1410.
    CAS PubMed Google Scholar
  47. Suwanichkul A., Allander S.V., Morris S.L., Powell D.R. Glucocorticoids and insulin regulate expression of the human gene for Insulin-like Growth Factor- Binding protein-1 through proximal promoter element. J. Biol. Chem. 1994, 269: 30835–30841.
    CAS PubMed Google Scholar

Download references