Dexamethasone effects on cortisol secretion in Alzheimer’s disease: Some clinical and hormonal features in suppressor and nonsuppressor patients (original) (raw)
References
Raskind M.A., Peskind E., Rivard M.-F., Veith R., Barnes R. The dexamethasone suppression test and cortisol circadian rhythm in primary degenerative dementia. Am. J. Psychiatry 1982, 139: 1468–1471. CASPubMed Google Scholar
Skare S., Pew B., Dysken M. The dexamethasone suppression test in dementia: a review of the literature. J. Geriatr. Psychiatry Neurol. 1990, 3: 124–138. ArticleCASPubMed Google Scholar
Carroll B.J., Feinberg M., Greden J.F., Tarika J., Albala A.A., Haskett R.F., James N., Kronfold Z., Lohr N., Steinert M., deVigne J.P., Young E. A specific laboratory test for the diagnosis of melancholia. Standardization, validation and clinical utility. Arch. Gen. Psychiatry 1981, 38: 15–22. ArticleCASPubMed Google Scholar
Herbert J. Neurosteroids, brain damage, and mental illness. Exp. Gerontol. 1998, 33: 713–727. ArticleCASPubMed Google Scholar
Davous P., Roudier M., Piketty M.L., Abramowitz C., Lamour Y. Pharmacological modulation of cortisol secretion and dexamethasone suppression in Alzheimer’s disease. Biol. Psychiatry 1988, 23: 13–24. ArticleCASPubMed Google Scholar
Balldin J., Blennow K., Brane G., Gottfries C.G., Karlsson I., Regland B., Wallin A. Relationship between mental impairment and HPA axis activity in dementia disorders. Dementia 1994, 5: 252–256. CASPubMed Google Scholar
Magri F., Locatelli M., Balza G., Molla G., Cuzzoni G., Fioravanti M., Solerte S.B., Ferrari E. Changes in endocrine circadian rhythms as markers of physiological and pathological brain aging. Chronobiol. Intern. 1997, 14: 385–396. ArticleCAS Google Scholar
Wilkinson C.W., Peskind E.R., Raskind M.A. Decreased hypothalamic-pituitary-adrenal axis sensitivity to cortisol feedback inhibition in human aging. Neuroendocrinology 1997, 65: 79–90. ArticleCASPubMed Google Scholar
Boscaro M., Paoletta A., Scarpa E., Barzon L., Fusaro P., Fallo F., Sonino N. Age-related changes in glucocorticoid fast feedback inhibition of adrenocorticotropin in man. J. Clin. Endocrinol. Metab. 1998, 83: 1380–1383. CASPubMed Google Scholar
Huizenga N.A.T.M., Koper J.W., DeLange P., Pols H.A.P., Stolk R.P., Grobbee D.E., De Jong F.H., Lamberts S.W.J. Interperson variability but intraperson stability of baseline plasma cortisol concentrations, and its relation to feedback sensitivity of the hypothalamuspituitary-adrenal axis to a low dose of dexamethasone in elderly individuals. J. Clin. Endocrinol. Metab. 1998, 83: 47–54. CASPubMed Google Scholar
De Kloet E.R., Van der Vies J., DeWied D. The site of suppressive action of dexamethasone on pituitary-adrenal activity. Endocrinology 1974, 94: 61–73. ArticlePubMed Google Scholar
De Kloet E.R., Vreugdenhil E., Oitzl M.S., Joëls M. Brain corticosteroids receptor balance in health and disease. Endocr. Rev. 1998, 19: 269–301. PubMed Google Scholar
Mc Ewen B.S. Stress and aging hippocampus. Front. Neuroendocrinol. 1999, 20: 49–70. Article Google Scholar
Svec F., Lopez A. Antiglucocorticoid actions of dehydroepiandrosterone and low concentration in Alzheimer’s disease. Lancet 1989, i: 1335–1336. Article Google Scholar
Behl C. Effects of glucocorticoids on oxidative stress-induced hippocampal cell death: implication for the pathogenesis of Alzheimer’s disease. Exp. Gerontol. 1998, 33: 689–696. ArticleCASPubMed Google Scholar
Kalimi M., Shafagoj Y., Loria R., Padgett D., Regelson W. Antiglucocorticoid effects of dehydroepiandrosterone (DHEA). Mol. Cell. Biochem. 1994, 131: 99–104. ArticleCASPubMed Google Scholar
Baulieu E.E., Robel P. Dehydroepiandrosterone and dehydroepiandrosterone sulfate as neuroactive neurosteroids. J. Endocrinol. 1996, 150: S221–S239. CASPubMed Google Scholar
Kimonides V.G., Khatibi N.H., Svendsen C.N., Sofroniew M.V., Herbert J. Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity. Proc. Natl. Acad. Sci. USA 1998, 95: 1852–1857. ArticleCASPubMedPubMed Central Google Scholar
Guazzo E.P., Kirkpatrick P.J., Goodyer I.M., Shiers H.M., Herbert J. Cortisol, dehydroepiandrosterone (DHEA), and DHEA sulfate in the cerebrospinal fluid of man: relation to blood levels and the effects of age. J. Clin. Endocrinol. Metab. 1996, 81: 3951–3960. CASPubMed Google Scholar
Sunderland T., Merril C.R., Harrington M.G., Lawlor B.A., Molchan S.E., Martinez R., Murphy D.R. Reduced plasma dehydroepiandrosterone concentrations in Alzheimer’s disease. Lancet 1989, ii: 570. Article Google Scholar
Näsman B., Olsson T., Backstrom T., Eriksson S., Grankvist K., Viitanen M., Bucht G. Serum dehydroepiandrosterone sulfate in Alzheimer’s disease and multi-infarct dementia. Biol. Psychiatry 1991, 30: 684–690. ArticlePubMed Google Scholar
Murialdo G., Nobili F., Rollero A., Gianelli M.V., Copello F., Rodriguez G., Polleri A. Hippocampal perfusion and pituitary-adrenal axis in Alzheimer’s disease. iNeuropsychobiology (in press).
Torres-Aleman I. Insulin-like Growth Factors as mediators of functional plasticity in the adult brain. Horm. Metab. Res. 1999, 31: 114–119. ArticleCASPubMed Google Scholar
Hoffman A.R., Lieberman S.A., Butterfield G., Thompson J., Hintz R.L., Ceda G.P., Marcus R. Functional consequences of somatopause and its treatment. Endocr. Rev. 1997, 7: 73–76. ArticleCAS Google Scholar
Connor B., Beilharz E.J., Williams C., Synk R., Gluckman P.D., Faull R.L.M., Dragunow M. Insulin-like growth Factor-I (IGF-I) immunoreactivity in the Alzheimer’s disease temporal cortex and hippocampus. Mol. Brain Res. 1997, 49: 283–290. ArticleCASPubMed Google Scholar
Morales A.J., Nolan J.J., Nelson J.C., Yen S.S.C. Effects of replacement dose of dehydroepiandrosterone in men and women of advancing age. J. Clin. Endocrinol. Metab. 1994, 78: 1360–1367. CASPubMed Google Scholar
Pfeilschifter J., Scheidt-Nave C., Leidig-Bruckner G., Woitge H.W., Blum W.F., Wüster C., Haack D., Ziegler R. Relationship between circulating Insulin-like Growth Factor components and sex hormones in a population-based sample of 50- to 80-year-old men and women. J. Clin. Endocrinol. Metab. 1996, 81: 2534–2540. CASPubMed Google Scholar
Casson P.R., Santoro N., Elkind-Hirsch K., Carson S.A., Hornsby P.J., Abraham G., Buster J.E. Postmenopausal dehydroepiandrosterone administration increases free insulin-like growth factor -I and decreases high-density lipoprotein: a six-month trial. Fertil. Steril. 1998, 70: 107–110. ArticleCASPubMed Google Scholar
Jones J., Clemmons D.R. Insulin-like growth factors and their binding proteins: biological actions. Endocr. Rev. 1995, 16: 3–34. CASPubMed Google Scholar
McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E.M. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS/ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34: 939–944. ArticleCASPubMed Google Scholar
Folstein M.F., Folstein S.E., McHughes P.R. Mini Mental State: a practical method for grading the cognitive state of patients for clinicians. J. Psychiatry Res. 1975, 12: 189–198. ArticleCAS Google Scholar
Reisberg B., Ferris S., De Leon M.J., Croock T. The global deterioration scale for assessment of primary degenerative dementia. Am. J. Psychiatry 1982, 139: 1136–1139. CASPubMed Google Scholar
Tsagarakis S., Grossman A. The hypothalamus-pituitary-adrenal axis in senescence. Front. Neuroendocrinol. 1999, 20: 70–91. Google Scholar
Swanwick G.R.J., Kirby M., Bruce I., Buggy F., Coen R.F., Cakley D., Lawlor B.A. Hypothalamic-pituitary-adrenal axis dysfunction in Alzheimer’s disease: lack of association between longitudinal and cross-sectional findings. Am. J. Psychiatry 1998, 155: 286–289. CASPubMed Google Scholar
Sapolsky R.M., Plotsky P.M. Hypercortisolism and its possible neural bases. Biol. Psychiatry 1990, 27: 973. Article Google Scholar
O’Brien J.T., Schweitzer I., Ames D., Tuckwell V., Mastwyk M. Cortisol suppression by dexamethasone in the healthy elderly: effect of age, dexamethasone levels, and cognitive function. Biol. Psychiatry 1994, 36: 389–394. ArticlePubMed Google Scholar
Hatzinger M., Z’Brun A Hemmeter U., Seifritz E., Baumann F., Holsboer-Trachsler E., Heuser I. Hypothalamic-pituitary-adrenal system function in patients with Alzheimer’s disease. Neurobiol. Aging 1995, 16: 205–209. ArticleCASPubMed Google Scholar
Miller A.H., Sastri G., Speranza A.J. jr, Lawlor B.A., Mohs R.C., Ryan T.M., Gabriel S.M., Serby M., Schneider J., Davis K.L. Lack of association between cortisol hypersecretion and non suppression on the DST in patients with Alzheimer’s disease. Am. J. Psychiatry 1994, 151: 267–270. CASPubMed Google Scholar
Martignoni E., Petraglia F., Costa A., Bono G., Genazzani A.R., Nappi G. Dementia of the Alzheimer type and hypothalamus-pituitary-adrenal axis: changes in cerebrospinal fluid corticotropin releasing factor and plasma cortisol levels. Acta Neurol. Scand. 1990, 81: 452–456. ArticleCASPubMed Google Scholar
Waltman C., Blackman M.R., Chrousos G.P., Riemann C., Harman S.M. Spontaneous and glucocorticoid-inhibited cortisol secretion in healthy young and old men. J. Clin. Endocrinol. Metab. 1991, 73: 495–502. ArticleCASPubMed Google Scholar
Bornstein S.R., Chrousos G.P. Adrenocorticotropin (ACTH)- and non-ACTH-mediated regulation of the adrenal cortex: neural and immune inputs. J. Clin. Endocrinol. Metab. 1999, 84: 1729–1736. ArticleCASPubMed Google Scholar
Rollero A., Murialdo G., Fonzi S., Garrone S., Gianelli M.V., Gazzerro E., Barreca A., Polleri A. Relationship between cognitive function, growth hormone and Insulin-like Growth Factor-I plasma levels in aged subjects. Neuropsychobiology 1998, 38: 73–79. ArticleCASPubMed Google Scholar
Guan J., Williams C., Gunning M., Mallard C., Gluckman P. The effects of IGF-I treatment after hypoxic-ischemic brain injury in adult rats. J. Cereb. Blood Flow Metab. 1993, 13: 609–616. ArticleCASPubMed Google Scholar
Doré S., Kar S., Quirion R. Insulin-like Growth Factor-I protects and rescues hippocampal neurons against?-amyloid- and human amylin-induced toxicity. Proc. Natl. Acad. Sci. USA 1997, 94: 4772–4777. ArticlePubMedPubMed Central Google Scholar
Lee P.D.K., Giudice L.C., Conover C.A., Powell D.R. Insulin-like growth factor binding protein-1: recent findings and new directions. Proc. Soc. Exp. Biol. Med. 1997, 216: 319–357. ArticleCASPubMed Google Scholar
Conover C.A., Clarkson J.T., Bale L.K. Effect of glucocorticoids on Insulin-like Growth Factor regulation of IGF-binding protein expression in fibroblasts. Endocrinology 1995, 136: 1403–1410. CASPubMed Google Scholar
Suwanichkul A., Allander S.V., Morris S.L., Powell D.R. Glucocorticoids and insulin regulate expression of the human gene for Insulin-like Growth Factor- Binding protein-1 through proximal promoter element. J. Biol. Chem. 1994, 269: 30835–30841. CASPubMed Google Scholar