Berner, R.A.: Iron sulfides formed from aqueous solutions at low temperatures and pressures. Jour. Geol. 72:293–306 (1964) Google Scholar
Berner, R.A.: Sedimentary pyrite formation. Amer. J. Sci. 268:1–23 (1970) Google Scholar
Berry, L.G.: The crystal structure of covellite, CuS, and klockmannite, CuSe. Am. Mineralogist 39:504–509 (1954) Google Scholar
Beveridge, T.J., Fyfe, W.S.: Metal fixation by bacterial cell walls. Can. J. Earth Sci. 22:1893–1898 (1985) Google Scholar
Blaszczyk, J.K.: Palaeomorphology of Weissliegendes top as the control on facies variability in ore-bearing series of Lubin copperfield, southwestern Poland. Geologia Sudetica 16:195–217 (1981) (Polish) Google Scholar
Boulegue, J.: Equilibria in a sulfide rich water from Enghien-les-Bains, France. Geochim. Cosmochim. Acta 41:1751–1758 (1977) Google Scholar
Boulegue, J., Lord, C.J., III, Church, T.M.: Sulfur speciation and associated trace metals (Fe, Cu) in the pore waters of Great Marsh, Delaware, Geochim. Cosmochim. Acta 46:453–464 (1982) Google Scholar
Boyle, R.W.: Cupriferous bogs in the Sackville area, New Brunswick, Canada. Jour. Geochem. Explor. 8:495–527 (1977) Google Scholar
Brockamp, O., Goulart, E., Harder, H. and Heydemann, A.: Amorphous copper and zinc sulfides in the metalliferous sediments of the Red Sea. Contr. Mineral. Petrol. 68:85–88 (1978) Google Scholar
Brooks, R.R., Presley, B.J., Kaplan, I.R.: Trace elements in the interstitial waters of marine sediments. Geochim. Cosmochim. Acta 32:397–414 (1968) Google Scholar
Degens, E.T., Okada, H., Honjo, S. and Hathaway, J.C.: Microcrystalline sphalerite in resin globules suspended in Lake Kivu, East Africa. Mineral. Deposita 7:1–12 (1972) Google Scholar
Djurle, S.: An X-ray study on the system Cu-S. Acta Chem. Scand. 12:1415–1426 (1958) Google Scholar
Fraser, D.C.: A syngenetic copper deposit of recent age. Econ. Geol. 56:951–962 (1961a) Google Scholar
Fraser, D.C.: Organic sequestration of copper. Econ. Geol. 56:1063–1078 (1961b) Google Scholar
Goble, R.J.: Copper sulfides from Alberta: yarrowite Cu9S8 and spionkiopite Cu39S28. Can. Mineralogist 18:511–518 (1980) Google Scholar
Goble, R.J., Robinson, G.: Geerite, Cu1.60S, a new copper sulfide from Dekalb Township, New York. Can. Mineralogist 18:519–523 (1980) Google Scholar
Goldhaber, M.B. and Kaplan, I.R.: The sulfur cycle. In: The Sea, E.D., Goldberg, Ed., Vol. 5, pp. 569–655. New York: Wiley-Interscience 1974 Google Scholar
Haranczyk, C.: Ore mineralization of the Lower Zechstein euxinic sediments in the fore-Sudetian Monocline. Arch. Miner. 30:13–172 (1972) (Polish) Google Scholar
Haranczyk, C.: Ore flats in the copper-bearing shales of the Fore-Sudetic Monocline in Lower Silesia, Poland. In: Syngenesis and epigenesis in the formation of mineral deposits, A. Wauschkuhn et al., Eds, pp. 153–159, Berlin-Heidelberg-New York: Springer 1984 Google Scholar
Haranczyk, C.: Zechstein copper-bearing shales in Poland. Lagoonal environments and sapropel model of genesis. In: Geology and metallogeny of copper deposits, G. Friedrich et al., Eds, pp. 461–476. Berlin-Heidelberg-New York: Springer 1986 Google Scholar
Jowett, E.C.: Genesis of Kupferschiefer Cu-Ag deposits by convective flow of Rotliegende brines during Triassic rifting. Econ. Geol. 81:1823–1836 (1986) Google Scholar
Kalliokoski, J., Cathles, L.: Morphology, mode of formations, and diagenetic changes in framboids. Bull. Geol. Soc. Finland 41:125–133 (1969) Google Scholar
Koch, H.P.: Mikrosondenuntersuchungen an Sulfiden aus Kupferschiefer Westeuropas. Dipl. Thesis, Goettingen, 1989
Love, L.G., Amstutz, G.C.: Review of Microscopic Pyrite. Fortschr. Miner. 434:273–309 (1966) Google Scholar
Love, L.G., Al-Kaisy, A.T., Brockley, H.: Mineral and organic material in matrices and coatings of framboidal pyrite from Pennsylvanian sediments, England. Jour. Sed. Petrol. 54:869–876 (1984) Google Scholar
Manheim, F.T., Sayles, F.L.: Composition and origin of interstitial waters of marine sediments based on deep sea drill cores. In: The Sea, E.D. Goldberg, Ed., Vol. 5, pp. 527–568. New York: Wiley-Interscience 1974 Google Scholar
Marowsky, G.: Schwefel-, Kohlenstoff- und Sauerstoffisotopen Untersuchungen aus Kupferschiefer als Beitrag zur genetischen Deutung. Contr. Miner. Petrol. 22:290–334 (1969) Google Scholar
Mayer, W., Piestrzynski, A.: Ore minerals from Lower Zechstein sediments at Rudna Mine, Fore-Sudetic monocline, SW Poland. Mineral. Transactions 75:1–72 (1985) Google Scholar
Morimoto, N., Koto, K.: Phase-relationships of the system Cu-S at low temperatures: stability of anilite. Am. Mineralogist. 55:106–117 (1970) Google Scholar
Niskiewicz, J.: Metasomathic phenomena in the Zechstein copper deposits in Lower Silesia. Geologia Sudetica 15:7–75 (1980) (Polish) Google Scholar
Oszczepalski, S., Rydzewski, A.: Palaeogeography and sedimentary model of the Kupferschiefer in Poland. In: The Zechstein facies in Europe, T.M. Peryt, Ed., pp. 189–205. Berlin-Heidelberg-New York: Springer 1987 Google Scholar
Papunen, H.: Framboidal texture of the pyritic layer found in a peat bog in SE-Finland. Compt. Rend. Soc. geol. Finlande 38:117–125 (1966) Google Scholar
Paul, J.: Zur Rand- und Schwellen-Fazies des Kupferschiefer. Z. dt. geol. Ges. 133:571–605 (1982) Google Scholar
Pierce, L., Buseck, F.R.: Superstructuring in the bornite-digenite series: a high-resolution elecron microscope study. Am. Mineralogist. 63:1–16 (1978) Google Scholar
Potter, R.W., II: An electrochemical investigation of the system coppersulfur. Econ. Geol. 72:1524–1542 (1977) Google Scholar
Potter, R.W., II, Evans, H.T.E., Jr.: Definite X-ray powder data for covellite, anilite, djurleite and chalcocite. Jour. Res. US Geol. Surv. 4:205–212 (1976) Google Scholar
Preidl, M., Metzler, M.: The Sedimentation of Copper-Bearing Shales (Kupferschiefer) in the Sudetic Foreland. Mineral. Deposita 19:243–248 (1984) Google Scholar
Rentzsch, J.: The Kupferschiefer in comparison with the deposits of the Zambian Copperbelt. In: Gisements stratiformes et provinces curpiferes, P. Bartholome, Ed., pp. 395–418. Liege 1974
Rickard, D.T.: The chemistry of iron sulphide formation at low temperatures. Stockholm. Contr. Geol. 20:67–95 (1969) Google Scholar
Rickard, D.T.: The origin of framboids. Lithos 3:269–293 (1970) Google Scholar
Rickard, D.T.: Covellite formation in low-temperature aqueous solutions. Mineral. Deposita 7:180–188 (1972) Google Scholar
Rickard, D.T.: Copper sulphide formation chemistry at low temperatures. Tschermaks Miner. Petr. Mitt. 19:60–75 (1973a) Google Scholar
Rickard, D.T.: Sedimentary iron sulphide formation. In: Proc. Intern. Symp. on Acid Sulphate Soils, H. Dost, Ed., pp. 28–65. Wageningen, 1973b
Rickard, D.T.: Kinetics and mechanism of pyrite formation at low temperatures. Amer. Jour. Sci. 275:636–652 (1975) Google Scholar
Roberts, W.M.B., Buchanan, A.S.: The effects of temperature, pressure and oxygen on copper and iron sulfides synthetised in aqueous solution. Mineral. Deposita 6:23–33 (1971) Google Scholar
Roseboom, E.H., Jr.: An investigation of the system Cu-S and some natural copper sulfides between 25° and 700°C. Econ. Geol. 61:641–672 (1966) Google Scholar
Sawlowicz, Z.: Significance of metalloporphyrins for the metal accumulation in the copper-bearing shales from the Zechstein copper deposits (Poland). Miner. Polonica 16:35–42 (1985) Google Scholar
Sawlowicz, Z.: Framboidal pyrite from the metamorphic Radzimowice schists of Stara Gora (Lower Silesia, Poland). Miner. Polonica 18:57–67 (1987) Google Scholar
Sawlowicz, Z.: On the origin of copper mineralization in the Kupferschiefer, a sulphur isotope study. Terra Nova 1:339–343 (1989) Google Scholar
Sawlowicz, Z.: Primary sulfide mineralization in Cu-Fe-S zones of the Kupferschiefer bed of Poland. Econ. Geol. in press
Scheihing, M.H., Gluskoter, H.J., Finkelman, R.B.: Interstitial networks of kaolinite within pyrite framboids in the Megis Coal of Ohio. Jour. Sed. Petrol. 48:723–732 (1978) Google Scholar
Schoonen, M.A.A., Barnes, H.L.: Kinetic paths for low temperature pyrite and marcasite formation from solution. Chem. Geol. 70:81 (1988) Google Scholar
Schouten, C.: Some notes on micro-pseudomorphism. Econ. Geol. 41:348–382 (1946) Google Scholar
Shea, D., Helz, G.: Solubility product constants of covellite and a poorly crystalline copper sulfide precipitate at 298K. Geochim. Cosmochim. Acta 53:229–236 (1989) Google Scholar
Siegl, W: Zur Genesis des Kupferschiefers. Min. Petr. Mitt. 52:347–362 (1941) Google Scholar
Siever, R., Beck, K.C., Berner, R.A.: Composition of interstitial waters of modern sediments. J. Geol. 73:39–73 (1965) Google Scholar
Sillitoe, R.H., Clark, A.H.: Copper and copper-iron sulfides as the initial products of supergene oxidation, Copiapo mining district, Northern Chile. Am. Mineralogist 54:1684–1710 (1969) Google Scholar
Skei, J.M.: Formation of framboidal iron sulfide in the water of a permanently anoxic fjord — Framvaren, South Norway. Marine Chem. 23:345–352 (1988) Google Scholar
Sweeney, R.E., Kaplan, I.R.: Pyrite framboid formation: Laboratory synthesis and marine sediments. Econ. Geol. 68:618–634 (1973) Google Scholar
Tusinski, S., Gasiewicz, A., Gerdes, G., Krumbein, W.E.: New evidence for the biogenic origin of the copper shale (T1) at Rudna Mine (SW Poland). Proc. Intern. Symp. Zechstein, Abstr. p. 113, Kassel-Hannover (1987)
Wedepohl, K.H.: The geochemistry of the Kupferschiefer bed in Central Europe. In: European Copper Deposits, 129–135, Belgrade (1980)
Wedepohl, K.H.: Composition and origin of the Kupferschiefer bed. Ore Geol. Reviews. in press