Early-blocked sporulation mutations alter expression of enzymes under carbon control in Bacillus subtilis (original) (raw)
- Anagnostopoulos C, Spizizen J (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746
Google Scholar - Baumann L, Baumann P (1973) Enzymes of glucose catabolism in cell-free extracts of non-fermentative marine eubacteria. Can J Microbiol 19:302–304
Google Scholar - Bohin J-P, Bohin A, Schaeffer P (1976) Increased nitrate reductase A activity as a sign of membrane alterations in early blocked asporogenous mutants of Bacillus subtilis. Biochimie 58:99–108
Google Scholar - Botsford JL (1981) Cyclic nucleotides in prokaryotes. Microbiol Rev 45:620–642
Google Scholar - Botstein DB, Maurer R (1982) Genetic approaches to the analysis of microbial development. Annu Rev Genet 16:61–83
Google Scholar - Bouvier J, Stragier P, Bonamy C, Szulmajster J (1984) Nucleotide sequence of the spo0B gene of Bacillus subtilis and regulation of its expression. Proc Natl Acad Sci USA 81:7012–7016
Google Scholar - Brehm SP, Staal SP, Hoch JA (1973) Phenotypes of pleiotropicnegative sporulation mutants of Bacillus subtilis. J Bacteriol 115:1063–1070
Google Scholar - Chamberlin MJ, Briat J-F, Singer VL, Glenn JS, Helman J, Leung A, Moorefield MB, Gilman MZ (1985) Isolation of genomic segments from Bacillus subtilis that contain promoters for σ28 RNA polymerase, and studies on regulation of their transcription in Bacillus subtilis and Escherichia coli. In: Hoch JA, Setlow P (eds) Molecular biology of microbial differentiation. American Society for Microbiology, Washington DC, pp 143–148
Google Scholar - Chasin LA, Magasanik B (1968) Induction and repression of the histidine-degrading enzymes of Bacillus subtilis. J Biol Chem 243:5165–5178
Google Scholar - Coote JG (1972) Sporulation in Bacillus subtilis. Genetic analysis of oligosporogenous mutants. J Gen Microbiol 71:17–27
Google Scholar - Coote JG (1974) Comparative studies on induction of sporulation and synthesis of inducible enzymes in Bacillus subtilis. J Bacteriol 120:1102–1108
Google Scholar - Dedonder RA, Lepesant J-A, Lepesant-Kejzlarova J, Billault A, Steinmetz M, Kunst F (1977) Construction of a kit of reference strains for rapid genetic mapping in Bacillus subtilis 168. Appl Environ Microbiol 33:989–993
Google Scholar - Ferrari E, Howard SA, Hoch JA (1986) Effect of stage 0 sporulation mutations on subtilisin expression. J Bacteriol 166:173–179
Google Scholar - Ferrari FA, Trach K, Hoch JA (1985a) Sequence analysis of the spo0B locus reveals a polycistronic transcriptional unit. J Bacteriol 161:556–62
Google Scholar - Ferrari FA, Trach K, LeCoq D, Spence J, Ferrari E, Hoch JA (1985b) Characterization of the spo0A locus and its product. Proc Natl Acad Sci USA 82:2647–2651
Google Scholar - Fisher SH, Magasanik B (1984a) Isolation of Bacillus subtilis mutants pleiotrophically insensitive to glucose catabolite repression. J Bacteriol 157:942–944
Google Scholar - Fisher SH, Magasanik B (1984b) Synthesis of oxaloacetate in Bacillus subtilis mutants lacking the 2-ketoglutarate dehydrogenase enzymatic complex. J Bacteriol 158:55–62
Google Scholar - Fisher SH, Sonenshein AL (1984) Bacillus subtilis glutamine synthetase mutants pleiotropically altered in glucose catabolite repression. J Bacteriol 157:612–621
Google Scholar - Fisher SH, Rosenkrantz MS, Sonenshein AL (1984) Glutamine synthetase gene of Bacillus subtilis. Gene 32:427–438
Google Scholar - Gilman MZ, Chamberlin MJ (1983) Developmental and genetic regulation of Bacillus subtilis genes transcribed by a σ-28 RNA polymerase. Cell 35:285–293
Google Scholar - Hoch JA (1971) Genetic analysis of pleiotropic negative sporulation mutants in Bacillus subtilis. J Bacteriol 105:896–901
Google Scholar - Hoch JA, Matthews JL (1973) Chromosomal location of pleiotropic negative sporulation mutations in Bacillus subtilis. Genetics 73:215–228
Google Scholar - Hoch JA, Spizizen J (1969) Genetic control of some early events in sporulation of Bacillus subtilis 168 In: Campbell LL (ed) Spores IV, American Society for Microbiology, Bethesda, MD, pp 112–120
Google Scholar - Hoch JA, Trach K, Kawamura F, Saito H (1985) Identification of the transcriptional suppressor sof-1 as an alteration in the spo0A protein. J Bacteriol 161:552–555
Google Scholar - Hranueli D, Piggot PJ, Mandelstam J (1974) Statistical estimate of the total number of operons specific for Bacillus subtilis sporulation. J Bacteriol 119:684–690
Google Scholar - Kawamura F, Saito H (1983) Isolation and mapping of a new suppressor mutation of an early sporulation gene mutation in Bacillus subtilis. Mol Gen Genet 192:330–334
Google Scholar - Kawamura F, Wang L-F, Doi R (1985) Catabolite-resistant sporulation (crsA) mutations in the Bacillus subtilis σ-43 gene (rpoD) can suppress and be suppressed by mutations in spo0 genes. Proc Natl Acad Sci USA 82:8124–8128
Google Scholar - Kudoh J, Ikeuchi T, Kurahashi K (1985) Nucleotide sequence of the sporulation gene spo0A and its mutant genes of Bacillus subtilis. Proc Natl Acad Sci USA 82:2665–2668
Google Scholar - Lepesant J-A, Dedonder R (1967) Metabolisme du l-arabinose chez Bacillus subtilis Marburg Ind−. CR Acad Sci (Paris) 264D:2683–2686
Google Scholar - Leung A, Ng D, Yang C, Rubinstein S, Deede C, Putnam W, Leighton T (1985a) The Bacillus subtilis spo0 regulon: intergenic suppression analysis of initiation control. In: Hoch JA, Setlow P (eds) Molecular biology of microbial differentiation. American Society for Microbiology, Washington, DC, pp 176–179
Google Scholar - Leung A, Rubinstein S, Yang C, Li J-W, Leighton T (1985b) Supression of defective-sporulation phenotypes by mutations in the major sigma factor gene (rpoD) of Bacillus subtilis. Mol Gen Genet 201:96–98
Google Scholar - Losick R, Youngman P, Piggot PJ (1986) Genetics of endospore formation in Bacillus subtilis. Annu Rev Genet 20:625–670
Google Scholar - Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275
Google Scholar - Neidhardt FC, Bloch PL, Smith DF (1974) Culture medium for Enterobacteria. J Bacteriol 119:736–747
Google Scholar - Nixon BT, Ronson CW, Ausubel FM (1986) Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc Natl Acad Sci USA 83:7850–7854
Google Scholar - Piggot P (1973) Mapping of asporogenous mutations of Bacillus subtilis: a minimum estimate of the number of sporulation operons. J Bacteriol 114:1241–1253
Google Scholar - Piggot P, Coote JG (1976) Genetic aspects of bacterial endospore formation. Bacteriol Rev 40:908–962
Google Scholar - Price CW, Doi RH (1985) Genetic mapping of rpoD implicates the major sigma factor of Bacillus subtilis RNA polymerase in sporulation initiation. Mol Gen Genet 201:88–95
Google Scholar - Sadaie Y, Kada T (1983) Formation of competant Bacillus subtilis cells. J Bacteriol 153:813–821
Google Scholar - Schaeffer P, Millet J, Aubert J-P (1965) Catabolic repression of bacterial sporultion. Proc Natl Acad Sci USA 54:704–711
Google Scholar - Sharrock RA, Rubinstein S, Chan M, Leighton T (1984) Intergenic suppression of spo0 phenotypes by the Bacillus subtilis mutation rvtA. Mol Gen Genet 194:260–264
Google Scholar - Sun D, Takahashi I (1985) Suppressor mutations for crs mutants of Bacillus subtilis. Can J Microbiol 31:429–435
Google Scholar - Takahashi I (1979) Catabolite-resistant mutations of Bacillus subtilis. Can J Microbiol 25:1283–1287
Google Scholar - Trach K, Chapman JW, Piggot P, Hoch JA (1985) Deduced product of the stage 0 sporulation gene spo0F shares homology with the Spo0A, 0mpR, and SfrA proteins. Proc Natl Acad Sci USA 82:7260–7264
Google Scholar - Vandeyar MA, Zahler SA (1986) Chromosomal insertions of Tn_917_ in Bacillus subtilis. J Bacteriol 167:530–534
Google Scholar - Yudkin MD, Boschwitz H, Kenyan A (1982) The effect of mutations in spo0A or spoIIA on the pattern of protein synthesis in Bacillus subtilis under sporulation conditions. Mol Gen Genet 187:244–247
Google Scholar - Zuber P, Losick R (1983) Use of a lacZ fusion to study the role of the spo0 genes of Bacillus subtilis in developmental regulation. Cell 35:275–283
Google Scholar